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Abstract
Functional changes in the aging human brain have been previously reported using functional magnetic resonance imaging 
(fMRI). Earlier resting-state fMRI studies revealed an age-associated weakening of intra-system functional connectivity 
(FC) and age-associated strengthening of inter-system FC. However, the majority of such FC studies did not investigate the 
relationship between age and network amplitude, without which correlation-based measures of FC can be challenging to 
interpret. Consequently, the main aim of this study was to investigate how three primary measures of resting-state fMRI sig-
nal—network amplitude, network topography, and inter-network FC—are affected by healthy cognitive aging. We acquired 
resting-state fMRI data on a 4.7 T scanner for 105 healthy participants representing the entire adult lifespan (18–85 years of 
age). To study age differences in network structure, we combined ICA-based network decomposition with sparse graphical 
models. Older adults displayed lower blood-oxygen-level-dependent (BOLD) signal amplitude in all functional systems, 
with sensorimotor networks showing the largest age differences. Our age comparisons of network topography and inter-
network FC demonstrated a substantial amount of age invariance in the brain’s functional architecture. Despite architecture 
similarities, old adults displayed a loss of communication efficiency in our inter-network FC comparisons, driven primarily 
by the FC reduction in frontal and parietal association cortices. Together, our results provide a comprehensive overview of 
age effects on fMRI-based FC.
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Introduction

Many cognitive functions decline with age (Buckner 2004; 
Grady 2008, 2012; Fabiani 2012; Hedden and Gabrieli 2004; 
Reuter-Lorenz and Cappell 2008; Schneider-Garces et al. 
2010; Spreng et al. 2010). Although the cognitive neurosci-
ence literature tends to emphasize aging effects on high-level 
cognition, especially memory, task switching, and selective 
attention (Fabiani 2012; Li et al. 2015; Spreng et al. 2010), 
laboratory tests of visual perception, facial processing, and 
motor function also revealed a drop in performance with age 
(Grady et al. 1994; Houx and Jolles 1993; Kauranen and 
Vanharanta 1996; Mattay et al. 2002). It has been hypoth-
esized that brain physiology alterations are responsible for 
much of the age-related decline in cognitive capacity (Buck-
ner 2004; Grady 2008, 2012; Reuter-Lorenz and Cappell 
2008; Sperling 2007; Spreng et al. 2010).
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The human brain can be conceptualized as a highly 
structured network, sometimes termed as the connectome 
of dynamically interacting neuronal communities (Buckner 
et al. 2013; Power et al. 2011; Rubinov and Sporns 2010; 
Wig 2017; Yeo et al. 2011, 2014). The brain’s functional 
architecture is commonly estimated from spontaneous low-
frequency blood-oxygen-level-dependent (BOLD) signal 
fluctuations, measured during resting-state functional Mag-
netic Resonance Imaging (RS-fMRI) scans (Buckner et al. 
2013; Craddock et al. 2013; Smith et al. 2011; Wig 2017; 
Wig et al. 2014). Functional connectivity (FC) studies report 
7–20 major resting-state networks (RSNs) with network 
topography localized to visual, somatomotor, and cognitive 
regions of the brain (Allen et al. 2011; Christoff et al. 2016; 
Gordon et al. 2017; Laumann et al. 2015; Petersen and Pos-
ner 2012; Power et al. 2011; Raichle and Snyder 2007; Wig 
2017; Yeo et al. 2011). Since spatial profiles of many RSNs 
resemble activation patterns from task-based fMRI studies, 
it has been hypothesized that RSNs represent fundamental 
units of brain organization, which are recruited in various 
combinations to perform specific tasks (Buckner et al. 2013; 
Crossley et al. 2013; Deco and Corbetta 2011; Smith et al. 
2009; Spreng et al. 2010).

Much of the early work on the relationship between rest-
ing-state FC and age was focused on intra-network com-
munication in select RSNs, especially the default mode sys-
tem (e.g., Andrews-Hanna et al. 2007; Damoiseaux et al. 
2008; Grady et al. 2012; Hampson et al. 2012; Koch et al. 
2010; Onoda et al. 2012; Persson et al. 2014; Sambataro 
et al. 2010). Those studies revealed an age-related loss of 
functional interaction between the medial frontal and the 
posterior cingulate/retrosplenial cortices (but see Persson 
et al. 2014). More recent RS-fMRI studies showed that in 
addition to the default mode network (DMN), age-related 
reduction in within-system FC is also present in brain net-
works involved in attention, cognitive control, sensory pro-
cessing, and motor function (Allen et al. 2011; Betzel et al. 
2014; Grady et al. 2016; Ng et al. 2016; Song et al. 2014; 
Spreng et al. 2016; Zonneveld et al. 2019). Moreover, stud-
ies that employed graphical models to quantify age effects 
on FC showed that network community structure becomes 
less efficient and less segregated in old age (Cao et al. 2014; 
Chan et al. 2014; Chong et al. 2019; Geerligs et al. 2015; 
Spreng et al. 2016), with long-range FC being particularly 
vulnerable (Tomasi and Volkow 2012).

Despite these advances, the number of studies that 
examined age differences in functional architecture of the 
entire brain is still relatively small, with most relying on 
anatomical or functional atlases to define their networks 
(Betzel et al. 2014; Chan et al. 2014; Chong et al. 2019; 
Fjell et al. 2015; Geerligs et al. 2015; Meunier et al. 2009; 
Song et al. 2014; Wang et al. 2010). Unfortunately, it has 
been shown that FC estimates can vary substantially from 

one atlas to another, even when all image preprocessing 
and data analysis methods are controlled (Cao et al. 2014). 
Employing ROIs from a predefined atlas may also fail to 
capture inter-individual variability in brain organization 
since individual network architecture can deviate, some-
times substantially, from an average map (Gordon et al. 
2017; Laumann et al. 2015; Mueller et al. 2013). Further-
more, most connectomic studies of brain aging used mass 
univariate correlation methods to quantify age effects on 
the brain’s functional organization (Andrews-Hanna et al. 
2007; Betzel et al. 2014; Geerligs et al. 2015; Grady et al. 
2016; Han et al. 2018; Meier et al. 2012; Rubinov and 
Sporns 2010; Zonneveld et al. 2019). Although informa-
tive, correlation-based differences are challenging to inter-
pret without additional information about the underlying 
BOLD signal properties (Duff et al. 2018). In addition to 
the time series coupling, two other factors are responsible 
for the correlation coefficient strength in all RS-fMRI con-
nectivity comparisons: network amplitude and magnitude 
of background noise (Duff et al. 2018). For this reason, 
examining network amplitude adds another layer of valu-
able information about the underlying neurobiology of 
aging. It also provides insight into factors that may have 
caused the observed increases/decreases in correlation-
based FC. To date, research on the relationship between 
age and RSN amplitude has been limited. Most RS-fMRI 
studies of brain aging did not test for age differences in 
network amplitude (e.g., Betzel et al. 2014; Cao et al. 
2014; Chan et al. 2014; Geerligs et al. 2015; Grady et al. 
2016; Meunier et al. 2009; Spreng et al. 2016), while those 
that did, focused either on early (up to middle adulthood) 
or late (50 years of age and older) aging only (Allen et al. 
2011; Zonneveld et al. 2019).

Since conclusions from many prior RS-fMRI studies 
of brain aging were limited by correlation-only methodol-
ogy, our study’s main goal was to investigate age effects on 
every primary measure of RS-fMRI signal—i.e., network 
amplitude, network topography, and inter-network com-
munication. To address these research questions, we com-
bined a high-field RS-fMRI acquisition, data-driven network 
decomposition, sparse graphical model estimation, and a 
sample representing the entire adult lifespan. In task-based 
fMRI experiments, the most prominent activity differences 
between young and old adults are often found in the pre-
frontal and parietal association cortices (Cabeza et al. 2002, 
2004; Davis et al. 2008; Grady et al. 1994; Gutchess et al. 
2005; Li et al. 2015; Logan et al. 2002; Persson et al. 2014; 
Rypma and D’Esposito 2000; Rajah and D’Esposito 2005; 
Schneider-Garces et al. 2010; Spreng et al. 2010; Sugiura, 
2016). Consequently, we were also interested in determining 
whether RSNs mapping onto frontal and parietal association 
areas are more affected by aging than visual, auditory, and 
somatomotor RSNs.
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Since previous task-based and resting-state fMRI studies 
reported aging-related reductions of BOLD signal power in 
a variety of cortical areas (Allen et al. 2011; D’Esposito 
et al. 1999; Handwerker et al. 2007; Hesselmann et al. 2001; 
Mehagnoul-Schipper et al. 2002; Riecker et al. 2006; Taoka 
et al. 1998; West et al. 2019; Zonneveld et al. 2019), we 
predicted a widespread decline of BOLD signal amplitude 
with age affecting multiple RSNs. According to recent 
boundary-based FC work (Han et al. 2018), network struc-
ture does not change drastically with age. Consequently, we 
expected a large degree of architectural stability throughout 
the adult lifespan. Lastly, since previous structural and func-
tional imaging work showed frontal and parietal associa-
tion cortices to be particularly vulnerable to aging processes 
(Grady et al. 2016; Damoiseaux 2017; Fabiani 2012; Raz 
et al. 2005; Sugiura 2016; Wig 2017), we expected frontal 
and parietal association networks to display the largest age 
differences in FC and BOLD signal amplitude.

Materials and methods

Participants

For this cross-sectional study, we recruited 105 healthy vol-
unteers (45 men, 60 women) across the entire adult lifespan 
(16 volunteers per decade of life, on average; age range: 
18–85; Table 1) through online, newspaper, and poster 
advertisements. Of those, 78 participants were Caucasian 
(74%), 17 Asian (16%), 7 Latin American (7%), 2 (2%) Per-
sian and 1 Arab (1%) Canadians. According to the 20-item 

Edinburgh Handedness Inventory (Oldfield 1971), 12 of 
the participants were left-handed [individuals with lateral-
ity quotient ≥  + 80 were determined as right-handed]. All 
participants had no lifetime psychiatric disorders and no 
reported psychosis or mood disorders in first-degree rela-
tives, as assessed by the Anxiety Disorders Interview Sched-
ule—IV (Brown et al. 2001; Di Nardo et al. 1994), which 
assesses for anxiety, affective, and substance use disorders. 
Medical exclusion criteria were defined as those active and 
inactive medical conditions that may interfere with normal 
cognitive function: cerebrovascular pathology, all tumors or 
congenital malformations of the nervous system, diabetes, 
multiple sclerosis, Parkinson’s disease, epilepsy, organic 
psychosis (other than dementia), schizophrenia, and stroke. 
Furthermore, medications that directly affect cognition, 
including benzodiazepines, antipsychotics, anticholinergic 
drugs, and antidepressants, were also exclusionary. The 
participants’ demographic information is summarized in 
Table 1.

In-person interviews were conducted to assess each par-
ticipant’s cognitive function. Older subjects with mild cog-
nitive impairment (MCI) and dementia were excluded from 
the study. MCI was defined by the presence of cognitive 
complaints (documented on the AD-8, Galvin et al. 2007) 
with documented impairment on the Montreal Cognitive 
Assessment (MOCA) test (Nasreddine et al. 2005). All of 
our participants attained MOCA scores between 26 and 30. 
Dementia was defined according to the DSM-IV criteria with 
Clinical Dementia Rating (CDR) as an additional screening 
tool in older (> 50 years of age) participants (Hughes et al. 
1982). CDR was used to assess functional performance in 

Table 1  Age-specific 
demographic information of 
study participants

Volunteers ≤ 39 years of age were classified as young adults; volunteers who were ≥ 60 years were classi-
fied as old adults, and those between 40 and 59 years of age were classified as middle-aged adults. These 
age splits were based on our earlier volumetric work (Malykhin et al. 2017)

Age group

Young (n = 43) Middle (n = 31) Old (n = 31)

Age (years)
 Mean ± SD 27.1 ± 5.4 50.0 ± 5.6 70.3 ± 6.7
 Range [min/max] 18/39 41/59 61/85

Sex (males/females) 18/25 13/18 14/17
Handedness (left/right) 5/38 5/26 2/29
Smoking history (y/n) 2/41 1/30 1/30
Elevated blood pressure (y/n) 0/43 1/30 12/19
Family history of AD (y/n) 7/36 4/27 6/25
Education (years)
 Mean ± SD 16.2 ± 1.8 16.0 ± 2.5 15.7 ± 3.0
 Range [min/max] 12/20 12/22 11/23

MOCA
 Mean ± SD 28.1 ± 1.4 27.5 ± 1.1 27.4 ± 1.3
 Range [min/max] 26/30 26/30 26/30
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6 key areas: memory, orientation, judgment and problem 
solving, community affairs, home and hobbies, and personal 
care. A composite score from 0 to 3 was calculated. All of 
our participants met the cutoff score of < 0.5 for the total 
CDR score. To screen older volunteers for depression, the 
Geriatric Depression Scale was used (Yesavage et al. 1982). 
Designed to rate depression in the elderly, a score of > 5 is 
suggestive of depression, and a score > 10 is indicative of 
depression. All of our elderly (> 50 years of age) participants 
had a score of 4 or lower. Lastly, all older (> 50 years of 
age) participants were assessed for vascular dementia with 
the Hachinski Ischemic Scale (HIS; Hachinski et al. 1975). 
A score above 7 out of 18 has 89% sensitivity. HIS scores 
of all elderly participants were 3 or lower. Written informed 
consent was obtained from each participant, and the study 
was approved by the University of Alberta Health Research 
Ethics Board.

Data acquisition

All images were acquired on a 4.7 T Varian Inova MRI 
scanner at the Peter S. Allen MR Research Centre (Uni-
versity of Alberta, Edmonton, AB) using a single-transmit 
volume head coil (XL Resonance) with a 4-channel receiver 
coil (Pulseteq). 200 functional volumes were collected axi-
ally (in parallel to the AC–PC line) using a custom-written 
 T2*-sensitive Gradient Echo Planar Imaging (EPI) pulse 
sequence sensitive to blood oxygenation level-dependent 
(BOLD) contrast [repetition time (TR): 3000 ms; echo 
time (TE): 19 ms; flip angle: 90°; field of view (FOV): 
216 × 204 mm2; voxel size: 3 × 3 × 3 mm3; 45 interleaved 
slices; phase encoding direction: anterior to posterior; 
GRAPPA parallel imaging with acceleration factor 2 (Gris-
wold et al. 2002)]. For the resting-state portion of the scan, 
subjects were instructed to remain still, stay awake, and keep 
their eyes closed. To estimate  B0 inhomogeneity, two gradi-
ent echo images with different echo times were acquired with 
coverage and resolution matching those of the functional 
MRI data [TR: 500 ms; TE1: 4.52 ms; TE2: 6.53 ms; flip 
angle: 50°; FOV: 216 × 204 mm2; voxel size: 3 × 3 × 3 mm3; 
45 interleaved slices]. A whole-brain  T1-weighted 3D 
Magnetization Prepared Rapid Gradient Echo (MPRAGE) 
sequence [TR: 8.5 ms; TE: 4.5 ms; inversion time: 300 ms; 
flip angle: 10°; FOV: 256 × 200 × 180 mm3; voxel size: 
1 × 1 × 1 mm3] was used to acquire anatomical images for 
tissue segmentation and registration to standard space.

Image preprocessing

Functional images were processed using SPM12 (Wellcome 
Trust Centre for Neuroimaging, UCL, UK), FSL (Jenkin-
son et al. 2002; Smith et al. 2004), and ANTS (Avants and 
Gee 2004; Avants et al. 2008) software packages. Prior to 

registration, MPRAGE images underwent correction for 
intensity non-uniformity using N3 (Sled et al. 1998) and 
SPM12 bias correction algorithms. Subsequently, each par-
ticipant’s structural images were segmented into tissue prob-
ability maps using SPM12 unified segmentation.

Functional data were preprocessed with a series of steps 
commonly used in the field (Fig. 1a). The first four func-
tional volumes of each dataset were discarded to ensure 
 T1-equilibrium. SPM12 FieldMap toolbox was used to 
estimate  B0 distortions and to generate voxel displacement 
maps caused by  B0 inhomogeneity. The unified ‘realign & 
unwarp’ function in SPM12 was then used to correct geo-
metric distortions in the fMRI data and to realign all fMRI 
volumes to the first functional volume (SPM12; Andersson 
et al. 2001). Following the realignment procedure, fMRI 
images underwent correction for slice acquisition-dependent 
time shifts. To ensure optimal tissue alignment between the 
anatomical and functional data, fMRI datasets were reg-
istered to matching  T1-weighted anatomical scans using 
boundary-based registration (FSL; Greve and Fischl 2009). 
To register RS-fMRI data to the MNI template, the SyN 
algorithm (ANTS; Avants et al. 2008) was used to com-
pute tissue deformation fields based on  T1-weighted struc-
tural data. Normalized fMRI datasets were resampled to a 
2 × 2 × 2 mm3 voxel size and smoothed with a 6-mm FWHM 
Gaussian kernel (SPM12; Wellcome Trust Center for Neu-
roimaging, UCL, UK).

Manual labeling of subject‑level independent 
components

We employed Probabilistic Independent Component Analy-
sis with an automated estimation of the number of inde-
pendent components (FSL; Beckmann & Smith, 2004) to 
remove motion-related, cardiovascular, and respiratory sig-
nals from our RS-fMRI data. ICA-based fMRI denoising 
strategies have two major advantages over scrubbing and 
spike regression approaches: (1) they preserve autocorre-
lation properties of the RS-fMRI signal, and (2) they are 
able to capture complex interactions between various noise 
sources (Pruim et al. 2015a). Since no other studies have 
performed noise component labeling on our 4.7 T Varian 
scanner, we performed manual identification of noise com-
ponents in every subject. Building an automated classifier 
for ICA-based (e.g., FIX classifier; Salimi-Khorshidi et al. 
2014) denoising using the current dataset was not feasible, 
as it would have necessitated removing subjects from our 
sample of 105 individuals to train a brand new classifier, 
reducing the study sample size.

Consequently, a single rater (SH) labeled all components 
as (1) potential resting-state network or (2) noise based on 
the criteria outlined in Griffanti et al. (2017). As advised by 
Pruim et al. (2017), only unambiguous noise components 
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were labeled for removal. To this end, spatial maps, time 
courses, and power spectra of every component were manu-
ally inspected. First, eye ghosting, scanner noise, cardio-
vascular, and respiratory components were identified by 
manual inspection. Components labeled as scanner noise 
were identified by two criteria: (1) majority of spatial acti-
vation outside the gray matter, and (2) distinct power spec-
trum pattern, dominated by high-frequency spikes—gen-
erally above 0.11 Hz—with little to no power represented 
by lower frequencies (i.e., < 0.10 Hz). Cardiovascular and 
respiratory noise sources were identified based on Griffanti 
et al. (2017) guidelines, while head motion artifacts were 
identified using Griffanti et al. (2017) criteria with the aid 
of a fully automated head motion component classifier ICA-
AROMA (Pruim et al. 2015a).

Inter-rater and intra-rater reliabilities for component 
classification were performed on 100 components, chosen 
semi-randomly from 16 subjects. This reliability set con-
sisted of 50 ‘noise’ and 50 ‘signal/unclear’ ICs, based on a 

prior (1 month earlier) classification by SH. The intra-rater 
reliability was assessed by SH, who classified those 100 
ICs into ‘remove’/‘retain’ categories twice, with a 2-week 
interval between each classification. The ‘remove’/‘retain’ 
inter-rater reliability was assessed by two independent 
analysts—SH and NVM. Intra-rater and inter-rater Dice 
Similarity Coefficients (DSCs) for ‘remove’/‘retain’ cat-
egories were 0.93/0.93 and 0.92/0.91, respectively. Thus, 
our manual component labeling showed a high degree 
of consistency, with more than 9 out of 10 ICs receiv-
ing identical labels in intra-observer and inter-observer 
evaluations.

Eye ghosting and dominant head motion artifacts (e.g., 
global signal drifts with spatial maps localized exclusively 
to the skull) were removed using the ‘aggressive’ option in 
fsl_regfilt, while all other artifacts were removed using the 
‘soft’ regression option in fsl_regfilt (Beckmann and Smith 
2004; Griffanti et al. 2014). Griffanti et al. (2014) demon-
strated that ‘soft’ regression produces a good data cleanup 

Fig. 1  Overview of image-processing pipeline. a Preprocessing of 
structural and functional data prior to group ICA decomposition; b 
fMRI decomposition into constituent signal sources using group ICA; 

c postprocessing of network time courses; d postprocessing of net-
work spatial maps. Green, pipeline input; cyan, pipeline output. Out-
puts of panels c and d were used to study brain aging
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without sacrificing network signals. Consequently, this was 
our primary approach for noise removal.

Lastly, prior to running the group ICA decomposition, 
each subject’s denoised RS-fMRI dataset was intensity nor-
malized (Fig. 1a). Intensity normalization has been previ-
ously shown to improve the test–retest reliability of group-
level ICA decompositions (Allen et al. 2010). It also ensures 
that resting-state BOLD signal fluctuations in every subject 
are scaled to % signal change units.

Group independent component analysis

Recent FC studies revealed that there are multiple regions in 
the human brain that participate in more than one RSN, pri-
marily in the frontal and parietal association cortices (Liao 
et al. 2017; Mueller et al. 2013; Yeo et al. 2014). Group ICA 
(GICA; Calhoun et al. 2001) with a newer generation of 
subject-level reconstruction techniques can capture many of 
these FC complexities (Allen et al. 2012; Du et al. 2017; Yeo 
et al. 2014), while also foregoing the need to make some-
what arbitrary choices about which seeds/atlases one ought 
to use in connectivity comparisons. Here, we used the GIFT 
toolbox for MATLAB to perform group-level data-driven 
network decomposition (Calhoun et al. 2001; http://icatb 
.sourc eforg e.net/group ica.htm). Below, we outline detailed 
choices of the parameters we used in our decompositions 
(see Fig. 1b for flow-chart form).

Since our RS-fMRI data underwent substantial denois-
ing  at the individual level, resulting in reduced source 
dimensionality, we chose not to set the ICA model order 
based on previously published literature. Instead, we esti-
mated model order by running the Infomax ICA algorithm 
(Bell and Sejnoski 1995) 200 times in ICASSO (http://www.
cis.hut.fi/proje cts/ica/icass o). This approach renders Inde-
pendent Component estimation insensitive to initial search 
parameters of the ICA algorithm, and directly estimates 
component reliability for each model order (Himberg et al. 
2004). The ICASSO implementation in the GIFT toolbox 
provides quality estimates for all component clusters via 
the intra-cluster and extra-cluster similarity index, Iq. Our 
goal was to find the ICA model order such that Iq for all 
component clusters was 0.80 or higher, which resulted in 
49 components. The initial subject-specific principal com-
ponent analysis (PCA) retained 95 principal components 
(PCs) using standard decomposition. On average, 95 PCs 
explained 92.3% (range: 87.7–99.7, SD = 1.99) of variance 
in each preprocessed subject-specific fMRI dataset, while 
providing some data compression to reduce the computa-
tional demands. We used group-information guided ICA 
(GIG-ICA; Du and Fan 2013), which uses group-level ICs 
to guide subject-level ICA, for computing subject-level ICs 
and time courses (Fig. 1b). Inter-individual differences in 
network structure exist (Gordon et al. 2017; Laumann et al. 

2015), and GIG-ICA is better positioned to capture those 
inter-individidual differences than back-reconstruction or 
dual regression (Du et al. 2016).

Group-level RSN ICs were identified by two viewers (SH 
and NVM) who manually inspected the aggregate spatial 
maps and power spectra. Specifically, when evaluating the 
average power spectra, two well-established metrics were 
used: (1) dynamic range, and (2) low frequency to high-
frequency power ratio [for details see, Allen et al. (2011) and 
Robinson et al. (2009)]. We employed a relatively conserva-
tive labeling scheme, whereby only components resembling 
previously identified networks (Allen et al. 2011; Power 
et al. 2011; Yeo et al. 2011) were classified as RSNs. Given 
our set of criteria, we successfully identified 21 RSN ICs 
[subsequently termed network components or simply RSNs].

Subject-specific network time courses were detrended 
(involving removal of the mean, slope, and period π and 
2π sines and cosines over each time course) using the 
multi-taper approach (Mitra and Bokil 2008) with the time-
bandwidth product set to 3 and the number of tapers set 
to 5 (Fig. 1c). The RSN spatial maps were thresholded to 
ensure that our analyses were focused on the subset of vox-
els, which are most consistently associated with the network 
time courses across all subjects in our sample (Fig. 1d). 
Thresholding was based on the distribution of voxelwise 
t-scores using a model-based approach outlined in Allen 
et al. (2011). According to this model, the distribution of 
voxelwise t-statistic scores can be approximated by a linear 
combination of 1 normal and 2 gamma functions (Suppl. 
Figure  1). The normal distribution represents network-
irrelevant voxels, while the two gamma functions represent 
positive and negative network sources (i.e., areas positively 
and negatively correlated with the network’s time course). 
Mathematically, this relationship is explained by Eq. 1:

Values of the six parameters (μc, σc, αc1, βc1, αc2, and βc2) 
were estimated by minimizing the root-mean-squared-devi-
ation (RMSD) between the modeled and empirical t-statistic 
distributions using the SIMPLEX algorithm (Nelder and 
Mead 1965). To ensure that the optimal global solution was 
obtained, the optimization algorithm was initiated 15,000 
times, each time with a different set of randomly chosen 
values. The most relevant solutions for thresholding pur-
poses are μc and σc parameters of the normal distribution, as 
the normal distribution represents network-irrelevant voxels. 
Here, we thresholded our spatial maps at t ≥ μc + 3σc. We 
found this threshold to be a good compromise between sen-
sitivity and specificity: in all networks, t ≥ μc + 3σc threshold 
was stricter than False Discovery Rate (FDR) q < 0.05 and 
stricter than FDR q < 0.01 in 8 RSNs, while, on average, 

(1)

t ≈ pc1N
(
tc|�c, �c

)
+ pc2G

(
tc − �c|�c1, �c1

)

+

(
1 − pc1 − pc2

)
G
(
−tc − �c|�c2, �c2

)
.

http://icatb.sourceforge.net/groupica.htm
http://icatb.sourceforge.net/groupica.htm
http://www.cis.hut.fi/projects/ica/icasso
http://www.cis.hut.fi/projects/ica/icasso
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56% of RSN-related voxels were retained. All subsequent 
mentions of component topography and intra-network FC 
refer to thresholded ICs.

Since Allen et al. (2012) demonstrated that in the pres-
ence of spatial variability, network amplitude is best cap-
tured as a product of time course standard deviation and 
peak spatial map intensity (here, the average intensity value 
of the top 1% of IC’s voxels), we used this measure as a 
proxy for RSN amplitude. Due to the pre-ICA intensity nor-
malization, the resulting amplitude values were (approxi-
mately) in percent signal change units. To ensure that IC 
spatial maps represent only network topography, as opposed 
to topography + activation, we normalized all RSN spatial 
maps by network amplitude (Allen et al. 2011). Network 
components were visualized using open-source Visualiza-
tion Toolkit software (VTK; Schroeder et al. 2006).

Modeling age relationships for network amplitude

To build models for each RSN’s amplitude’s relationship to 
age, we relied on the fractional polynomial [polynomial set: 
 age−2,  age−1,  age−0.5, ln(age),  age1,  age2,  age3] framework 
(Royston and Altman 1994; Sauerbrei and Royston 1999; 
Sauerbrei et al. 2006). The fractional polynomial (FP) tech-
nique controls for overfitting by restricting shape complexity 
if a model with k + 1 powers does not produce a statistically 
better fit than a model with k powers.

Since the residual normality and residual homoscedas-
ticity assumptions of the OLS estimator were violated in 
our RSN amplitude data (see Suppl. Table 1), we used L1 
(i.e., least absolute deviation), as opposed to L2 (i.e., least 
squares), regressions to estimate the aging trajectories. 
Unlike L2 models, which build trajectories to explain the 
population mean, L1 regressions produce fits that explain 
the population median and are more robust to heteroscedas-
tic, highly skewed data with severe outliers (Dielman, 2005; 
Lawrence and Shier 1981; Wimble et al. 2016). Custom-
written MATLAB scripts employing the SIMPLEX algo-
rithm (Nelder and Mead 1965) were used to find optimal 
L1 trajectories.

Statistical significance tests were performed sequentially: 
(1) best-fitting FP2 (i.e., fractional polynomial model with 
2 age power terms) vs. best-fitting FP1, (2) best-fitting FP1 
(i.e., fractional polynomial model with 1 non-linear age 
power term) vs. linear, (3) linear vs. constant. The test sta-
tistic that we used to evaluate all L1 regressions was

where  SARreduced and  SARfull represent the sum of abso-
lute values of the residuals for the reduced and full models, 
respectively. The denominator parameter τ is the L1 estimate 

(2)FLAD =

2
(
SARreduced − SARfull

)

𝜏
,

of residual variability for the full model (for more details 
on L1 significance testing, see Birkes and Dodge 1993). 
To estimate FLAD distributions under each null hypothesis, 
we performed Monte Carlo simulations (Suppl. Figure 2), 
using a conceptual framework that is similar to Freedman 
and Lane’s (1983) permutation tests for L2 regressions. Con-
sistent with the Freedman and Lane (1983) approach, we 
treated our sample’s L1 regression coefficients as proxies of 
the true population-level relationship. For each significance 
test, we first estimated L1 residuals for the reduced model. 
However, rather than permuting those residuals (the assump-
tion of residual exchangeability was severely violated in our 
data; see Suppl. Table 2), we first split each network compo-
nent’s L1 residuals into 3 age groups: young adult [N = 43; 
age range: 18–39 years, mean = 27.1 years], middle-aged 
[N = 31; age range: 41–59 years, mean = 50.0 years], and old 
adult [N = 31; age range: 61–85 years, mean = 70.3 years]. 
Each age group’s residuals were then used to estimate (using 
MATLAB’s ksdensity function) separate residual distribu-
tions for young, middle-aged, and old adults (see Suppl. Fig-
ure 2 for examples). Those distributions were subsequently 
bias-corrected to ensure that the average median of each 
distribution was centered at 0. In residual simulations, if 
an individual’s age was under 27 years of age, all residu-
als were randomly sampled from the ‘young’ distribution 
exclusively. Similarly, for every individual above 70 years 
of age, residuals were randomly sampled from the ‘old’ 
distribution exclusively. For individuals between 27 and 
70 years of age, sampling was performed probabilistically 
from the two distributions closest to a given subject’s age 
with weights varying as a linear function of age (e.g., residu-
als for a 60-year-old had a 50/50% chance of being sampled 
from the ‘middle-aged’ or ‘old’ distribution; residuals for 
a 65-year-old had a 25/75% chance of being sampled from 
the ‘middle-aged’/‘old’ distribution, respectively). Such 
probabilistic sampling smoothed out transitions between age 
groups by blending the neighboring residual distributions. 
Lastly, our simulated residuals were added to the previously 
estimated null hypothesis (i.e., reduced) model, generating 
one null hypothesis dataset. Each of our FLAD distributions 
was constructed from 25,000 such simulations (see Suppl. 
Figure 2 for a flow-chart example of linear vs. FP1 model 
comparison). System-level Holm–Bonferroni correction for 
multiple comparisons was applied for FP-selected vs. null 
(i.e., constant) model comparisons [3 comparisons for the 
somatomotor system, 4 comparisons for the visual system, 
1 comparison for the auditory system, 6 comparisons for the 
default system, 1 comparison for the dorsal attention system, 
2 comparisons for the executive control system, and 4 com-
parisons for the multi-system/mixed components].

Due to sampling-related uncertainty, model choice in 
data-driven model selection can vary from one dataset to the 
next. To minimize the effects of model selection uncertainty, 
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we performed weighted model averaging for all of our non-
linear fits. Model averaging was performed on a subset of 
all plausible regression shapes, up to the last statistically 
significant FP order. Since our RSN amplitude datasets did 
not satisfy the criteria of theory-driven model averaging, 
we used bootstrap model selection frequencies as proxies 
for model selection uncertainty (for an overview of model 
averaging, see Burnham and Anderson 2002). Bootstrap 
model averaging was done iteratively. First, a crude model-
averaged fit was estimated using paired bootstrap sampling 
(100 samples). For each paired bootstrap sample, the model 
with the smallest sum of absolute error terms was selected 
using a repeated (50 times) 20-fold cross-validation. Next, 
estimates of model selection uncertainty were refined by 
bootstrapping that average fit’s residuals. To preserve age-
specific residual properties (same issues as L1 hypothesis 
testing), all bootstrap samples of the residuals were per-
formed in an age-restricted manner (SD = 3 years, relative to 
each subject’s age). During this refined estimation of model 
selection uncertainty, 500 bootstrap samples were taken, and 
the model with the smallest sum of absolute error terms was 
chosen as the best model for each bootstrap sample using a 
repeated (100 times) 20-fold cross-validation. These refined 
model selection frequencies were used to compute the final 
model-averaged fits for all non-linear (i.e., FP1 and FP2) 
models.

To verify our L1 regression results, we also performed 
amplitude comparisons among the three major age groups 
[young: under 40 years (mean age = 27.1 years); middle: 
40–59 years (mean age = 50.0 years); old: 60 years and older 
(mean age = 70.3 years)]. A bias-corrected bootstrap test for 
statistical significance (50,000 samples) on the difference of 
age group medians was used for statistical inference. Sig-
nificance was declared when the FWE 95% bias-corrected 
accelerated (BCa) confidence interval (CI) excluded zero. 
System-specific (as above) Holm–Bonferroni correction 
for multiple comparisons were carried out sequentially. 
Initially, we tested the significance of group comparisons 
with the largest amplitude differentials (typically young vs. 
old) among all RSNs of a brain system (e.g., visual, default, 
somatomotor, etc.). If statistically significant, follow-up 
Holm–Bonferroni-corrected comparisons [3 tests: (1) young 
vs. middle, (2) middle vs. old, and (3) young vs. old] were 
performed to determine whether network amplitude differed 
in the other age group comparisons.

Modeling age relationships for spatial maps

Permutation-based F-tests (50,000 permutations using FSL’s 
randomize function with threshold-free cluster enhancement 
option; Smith and Nichols 2009) were used to test for the 
presence of linear or quadratic relationships to age in com-
ponent topography. Clusters with statistically significant 

relationships to age were cleaned up by (1) removing all 
clusters with volumes smaller than 80 mm3, representing 
1–3 native space voxels, (2) removing all clusters dominated 
(i.e., 50% or more) by white matter (WM) or cerebrospinal 
fluid (CSF) signal, and (3) removing clusters, in which gray 
matter contribution to the cluster peak (top 30% of voxels 
with the strongest association to age) was less than 50%. All 
age clusters that survived this cleanup procedure were fol-
lowed up with parametric fractional polynomial regression 
(RA2 model selection; Ambler and Royston 2001). Similar 
to RSN amplitude methodology, if non-linearity tests were 
significant, bootstrapping was used to account for model 
selection uncertainty by building model-averaged fits.

Finally, because it is well established that cortical gray 
matter (GM) volume is negatively correlated with age (Good 
et al. 2001; Fjell et al. 2009a; Raz et al. 1997, 2004, 2005), 
we examined whether adding a cluster’s GM volume would 
eliminate statistical association to age in spatial map regions 
showing age effects. To answer this question, we performed 
cluster-level regressions (i.e., RSN signal averaged across 
a cluster) with subject age and local GM density as the 
independent variables. Significant regression coefficients 
for age are indicative of age-related differences in network 
topography that cannot be fully accounted for by age-related 
changes in regional GM volume. Our GM density maps were 
estimated in native space using SPM12 automated tissue 
segmentation pipeline and were subsequently registered to 
the MNI template using the same transformation matrices 
that we used for normalizing our fMRI data.

Between‑component connectivity

The most common approach to building graphical models 
of brain organization is to use time course correlation coef-
ficients as proxies for FC (Craddock et al. 2013; Smith et al. 
2011). However, this approach suffers from two significant 
limitations: (1) a lack of control for communication via indi-
rect paths (Epskamp and Fried 2018; Smith et al. 2011; Zhu 
and Cribben 2018), and (2) a reliance on somewhat arbitrary 
thresholding (van den Heuvel et al. 2017; van Wijk et al. 
2010). To avoid these issues, we used a sparse precision 
matrix estimation procedure in our inter-IC FC analyses. 
Sparse estimation methods shrink spurious or indirect con-
nections to 0 by penalizing excessive model complexity if 
there is insufficient evidence in the data to support a com-
plex connectome (Smith et al. 2011; Zhu and Cribben 2018).

Zhu and Cribben (2018) used simulations to show that 
sparse network structure is best recovered using the maxi-
mum likelihood estimation of the precision matrix with the 
smoothly clipped absolute deviation (SCAD) regulariza-
tion term as a penalty for model complexity. This approach 
belongs to a family of graph estimation techniques building 
on the graphical lasso framework (Friedman et al. 2008). 
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Similar to the graphical lasso, incorporating the SCAD 
regularization term during graph estimation allows for the 
optimal balance between network complexity and network 
likelihood; however, relative to the more common LASSO 
penalty term, using SCAD reduces bias without sacrificing 
model stability (Fan and Li 2001; Zhu and Cribben 2018). 
The SCAD penalty relies on two tuning parameters, a and 
ρ. To minimize the Bayes risk, Fan and Li (2001) recom-
mend a = 3.7. The second tuning parameter, ρ, was selected 
using Bayesian Information Criterion (BIC) from a set of 
ρi = i × 0.01, with i = 1, 2, 3 …, 100. The ρ with the lowest 
BIC value was used to build final graphs (Fan et al. 2009; 
Zhu and Cribben 2018). Since temporal autocorrelation 
in the fMRI time series can produce biased FC estimates 
(Arbabshirani et al. 2014; Zhu and Cribben 2018), each 
component’s time course was whitened (using AR2 model) 
prior to graph estimation. Furthermore, since averaging 
across subjects improves the stability of edge detection 
when using sparse graphical methods, inter-component FC 
was estimated on group-averaged (i.e., young, middle-aged, 
and old adults) covariance matrices. For reasons detailed in 
Rubinov and Sporns (2010), edges representing anti-corre-
lations were removed from the estimated graphs. All sparse 
graphs were estimated using custom-written R functions, 
and Gephi (v0.9.2; Bastian et al. 2009) was used for graph 
visualizations. Follow-up graph summary metrics were com-
puted using freely available Brain Connectivity Toolbox for 
MATLAB (Rubinov and Sporns 2010).

Since our inter-component FC was estimated at the group 
level, we relied on group comparisons [Young vs. Old, 
Young vs. Middle, Middle vs. Old], rather than on correla-
tion-based methods, to study age differences in inter-compo-
nent FC. Edge weight comparisons and weighted graph sum-
mary metrics were used to study age effects on FC strength, 
while unweighted graph summary metrics were used to 
study age differences in graph architecture, independent of 
FC strength. Mathematical definitions of all weighted and 
unweighted graph summary metrics that were used in this 
study are provided in the Supplementary Materials.

Statistical significance for each graph-based age compari-
son was assessed using permutation tests (10,000 permuta-
tions), and false discovery rate (FDR)-corrected results are 
reported, for q = 0.05 (Hochberg, 1988). Global graph sum-
mary metrics were corrected for 3 tests (i.e., Young vs. Old, 
Young vs. Middle, Middle vs. Old), node centrality metrics 
for 21 tests (i.e., 21 RSNs in each age comparison), and edge 
comparisons for 56–59 tests (depending on the number of 
non-zero edges in relevant age groups). Since this study was 
exploratory in nature, we also report edge weight differences 
that survived an uncorrected p < 0.01 threshold.

Results

Resting‑state brain networks and their functional 
connectivity profiles

Following group-level spatial ICA decomposition, we identi-
fied 21 ICs representing RSN sources: 3 somatomotor [SM1, 
SM3, and SM3], 4 visual [Vis1, Vis2, Vis3, and Vis4], 1 
auditory [Au], 6 default mode [DM1, DM2, …, DM6], 1 
dorsal attention [DA], 2 executive control [EC1, EC2], and 
4 ICs with spatial maps covering multiple brain systems, 
according to the Yeo et al. (2011) functional parcellation 
of the cerebral cortex. We termed those multi-system ICs 
as mixed RSNs [Mix1–Mix4]. Figure 2 demonstrates the 
spatial topography of each network component in our study 
(see Suppl. Figures 3, 4, 5, 6 for additional views).

Consistent with the underlying physiology, our somato-
motor RSNs corresponded to face, hand, and leg areas of 
the primary somatosensory and primary motor cortices. 
Similarly, our visual ICs represented central/peripheral and 
primary/secondary visual processing pathways, while the 
default system was split into the dorsal medial (DM3 and 
DM6), medial temporal (DM2), and core (DM1, DM4, and 
DM5) subsystems. Although 3 default mode subsystems 
are typically emphasized in the literature (Andrews-Hanna 
et al. 2010, 2014; Christoff et al. 2016), using 4.7 T data, 
we obtained a more refined splitting of the DMN into its 
sub-components. RSNs of other cognitive systems, namely 
the dorsal attention and executive control, were captured by 
relatively few ICs (Fig. 2).

Our SCAD-regularized FC graph, representing direct 
inter-component FC for the entire (i.e., age-averaged) sam-
ple, revealed a high degree of functional specialization in the 
somatomotor and visual areas with few direct connections to 
other functional systems (Fig. 3). This is in contrast to the 
default, dorsal attention, and executive control RSNs, which 
demonstrated a high degree of interconnectedness with net-
work components from other functional systems: DA, DM1, 
DM5, and EC2 RSNs each had 2 or more direct connections 
with systems other than their own. Most multi-system (i.e., 
mixed) network components served as bridge nodes connect-
ing functionally segregated systems to each other (Fig. 3).

Network amplitude and age

Our L1 regression analyses showed that signal amplitude 
in every RSN was negatively associated with age (all cor-
rected ps < 0.05; Figs. 7, 8, 9). Non-linearity tests were 
statistically significant in only 4 out of 21 RSNs—SM2, 
SM3, Vis3, and DA—indicating that linear models pro-
vide a reasonable explanation of the association between 
age and BOLD signal amplitude in most brain areas. In a 
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typical 75-year-old, the system-averaged (i.e., averaged 
across 6 default mode components, 4 visual components, 
and 3 somatomotor components) BOLD signal amplitude 
was reduced by 61% in the somatomotor system, 63% in 
the visual system, 41% in the auditory system, 37% in the 
default system, 53% in the dorsal attention system, and 
38% in the executive control system, when compared to a 
typical 25-year-old (Figs. 4, 5). The smallest (30% or less) 
age-associated decline of BOLD amplitude was observed 
in the default mode and Mix4 ICs (Fig. 5), while all of the 
somatomotor and visual ICs showed > 50% BOLD ampli-
tude reduction from young adulthood to old age (Fig. 4).

To determine whether a common brain-wide process is 
responsible for the observed BOLD amplitude decline with 
age, we performed a principal component analysis (PCA) 
on the amplitude data from all network ICs. Only the first 

principal component, explaining 58% of the RSN ampli-
tude variability, was statistically significant in this PCA 
decomposition. This principal component (Fig. 6) was posi-
tively correlated with every RSN (correlation coefficients 
between 0.545 and 0.865) and negatively correlated with 
age (r = − 0.553, p < 0.001).

Age group comparisons of the RSN amplitude and ampli-
tude variability were statistically significant in most young 
vs. old tests, with some networks also showing statistically 
significant differences in young vs. middle and/or middle 
vs. old comparisons (Suppl. Figures 7, 8, 9). However, 
unlike the continuous models, which showed age-associated 
decline of BOLD amplitude in every RSN, group ampli-
tude comparisons did not detect any age differences in the 
DM2 and Mix4 network components. In all instances where 
young vs. old comparisons were statistically significant, 

Fig. 2  Intrinsic network components identified by the group-level independent component analysis
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median RSN amplitude was larger in young adults than in 
middle-aged and old adults, and larger in middle-aged adults 
than in old adults, suggesting a continuous and progressive 
reduction in RSN signal amplitude throughout life. Lastly, 
old adults had significantly lower inter-individual BOLD 
amplitude variability in all sensorimotor (SM1-3, Vis1-4, 
and Au) ICs, two default mode ICs (DM2 and DM3), two 
attention (DA and EC1) ICs, and three mixed (Mix1-3) ICs 
[all corrected ps < 0.05; see Suppl. Table 1]. Six network 
components—DM1, DM4-6, Mix4, and EC2—showed no 
age differences in BOLD amplitude’s inter-individual vari-
ability (all ps > 0.1).

Component topography and age

Across all network components, we identified 23 clusters 
with either linear or non-linear statistical relationships to 
age (Table 2; Figs. 7, 8, 9, 10). Age relationship clus-
ters were present in 5 out of 8 sensorimotor ICs, 4 out 
of 6 default mode ICs, 2 out of 3 attention/control ICs, 
and 2 out of 4 mixed ICs, suggesting that age effect on 

RSNs’ spatial map profiles is not limited to one particular 
functional system. Most of those age relationship clusters 
(19 out of 23) represented reduced intra-component FC 
among the elderly; however, a small number (4 out of 23), 
restricted to the DM1 and DA RSNs, showed areas with 
stronger intra-component FC in old age. With the excep-
tion of a few clusters, age relationships were linear.

The largest clusters, representing age differences in net-
work topography, belonged to the Mix4 IC. Those two clus-
ters (clusters V and W; Table 2) were located within the 
bilateral inferior frontal gyrus and bilateral orbitofrontal 
cortex [BA44–47], roughly corresponding to the Broca’s 
area and nearby cortices. Participation of these brain areas 
in Mix4 RSN declined from moderate/high in young adults 
(normalized activation of 0.4 and higher) to weak (normal-
ized activation < 0.4) in old adults, which is indicative of 
BA44–47 areas becoming increasingly disconnected from 
the rest of the network with age. Two other large clusters 
(1) cluster K, belonging to the DM4 RSN, and (2) cluster 
F, belonging to the Vis4 RSN, also showed a reduction in 
intra-component FC with age. Four clusters with the strong-
est association to age (i.e., largest absolute correlation with 
age) were clusters F, W, V, and C, belonging to the Vis1, 
Vis4, and Mix4 RSNs (Table 2). All 4 clusters showed nega-
tive linear relationships to age with correlation coefficients 
ranging between − 0.54 and − 0.58. Cluster C was localized 
within the left lingual, intracalcarine, and precuneus corti-
ces, while cluster F’s anatomy was restricted to the right 
fusiform gyrus (Table 2). Clusters V and W and their ana-
tomical profiles were described above.

GM volume was negatively associated with age in 21 out 
of 23 clusters. However, adding regional GM volume as an 
extra variable to cluster-level age regressions did not elimi-
nate age effects in 21 out of 23 clusters (Table 2), demon-
strating that age differences in component structure were not 
driven solely by age effects on cortical GM. Despite these 
overall trends, it is important to note that adding local GM 
volume as a regressor of no-interest eliminated age effects 
in clusters A and L (SM1 and DM4 RSNs, respectively). 
Together, these observations indicate that age differences 
in component topography are partially driven by age differ-
ences in regional GM. Furthermore, since cluster GM vol-
ume and intra-component FC were statistically associated in 
17 clusters (assessed using distance correlation with 50,000 
permutation tests for significance), causal study designs are 
needed for an accurate estimation of the extent to which 
structural and functional changes in the aging brain produce 
age differences in network topography.

Inter‑component functional connectivity and age

Lastly, we examined the effects of age on inter-component 
FC. First, we built sparse graphical representations of 

Fig. 3  Graphical representation of the intrinsic inter-component 
functional connectivity. Only positive correlations are shown. Edge 
thickness represents the magnitude of SCAD-regularized partial cor-
relation for network component pairs. Node size represents the mag-
nitude of unweighted eigenvector centrality. Coordinates depict the 
number of within-system (left number) and between-system (right 
number) connections. Node colors represent functional systems to 
which each network component belongs: SM, somatomotor (blue); 
V, visual (red); Au, auditory (green); DM, default mode (cyan); DA, 
dorsal attention (yellow); EC, executive control (magenta); Mix, 
mixed (black)
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inter-IC communication for the young, middle-aged, and 
old adult groups. Those graphs are visualized in Fig. 11.

Descriptively, a core set of 31 connections was identified 
in every age group, suggesting that the overall pattern of 
the brain’s functional organization did not differ drastically 
among age groups (Fig. 12). Most unweighted graph sum-
mary metrics, computed from binarized graphs, support this 
conclusion: global efficiency, transitivity, density, radius, 
diameter, characteristic path length, and centralization did 
not show any age-related statistical differences [all qs > 0.10, 
see Table 3 for details; see Suppl. Materials for mathemati-
cal definitions]. The only unweighted summary metric that 
attained statistical significance in our age comparisons was 
the number of intra-system connections. Specifically, the 
young adult group had fewer intra-system connections (a 
total of 15 edges) than middle-aged or old adult groups (a 
total of 19 edges in each group) [both qs < 0.05]. Despite 

differences in the number of intra-system connections, age 
groups did not show any statistical differences in the number 
of inter-system connections [all uncorrected ps > 0.10, see 
Table 3 for details].

Contrary to results from binarized graphs, we observed 
substantial age differences if weighted graphs were used to 
compute graph summary metrics (Table 3; see Suppl. Mate-
rials for mathematical definitions of weighted vs. unweigted 
graph summary metrics). The average edge thickness of all 
non-zero positive edges was greater in the young adult group 
than in the old adult group [Mdiff = 0.055, q < 0.010], and 
greater in the young adult group than in the middle-aged 
group [Mdiff = 0.0424, q < 0.050]. However, the average 
edge thickness of the middle-aged group did not differ from 
that of the old adult group [uncorrected p > 0.10], suggest-
ing that inter-IC partial correlation strength declines with 
age and that this decline is more pronounced in early aging. 

Fig. 4  L1 fractional polynomial regression plots showing relation-
ships between age and RS-fMRI amplitude in all a somatomotor, b 
visual, and c auditory networks. Red arrows represent relative dif-

ferences in resting-state fluctuation amplitude between a median 
25-year-old and a median 75-year-old
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Furthermore, the aforementioned age differences in edge 
weight were driven by intra-system, not inter-system, con-
nections (Table 3). Our age comparisons of weighted effi-
ciency metrics—global efficiency, network radius, network 
diameter, and characteristic path length—revealed a gradual 
loss of connectivity efficiency with age  [efficiencyyoung > effi-
ciencymiddle > efficiencyold; for details, see Table 3].

Next, we investigated node centrality to determine 
whether there were any age differences in component 
importance to the rest of the connectome. Similar to the 
unweighted global metrics, the unweighted degree, close-
ness, and betweenness centralities did not show any sta-
tistically significant age differences [all qs > 0.10, see 
Suppl. Table 2]. For the unweighted eigenvector centrality, 
we observed one statistically significant age effect in the 
Mix2 RSN: lower centrality in old relative to young adults 
 [EigenCentralityyoung = 0.9705,  EigenCentralityold = 0.405, q 
≈ 0.050]. Unlike its unweighted counterpart, weighted close-
ness centrality was reduced in old relative to young adults in 
all 21 RSNs (Table 4). Age differences in weighted degree 
and/or eigenvector centrality were found in SM2, Vis1, Au, 
DM1, DM2, DM6, DA, EC2, Mix1, Mix2, and Mix4 RSNs 
(see Table 4 for details), while weighted betweenness cen-
trality did not show any statistically significant age effects.
Taken together, these results demonstrate that the  aging 
process modulates  FC strength but does not lead to a sub-
stantial restructuring of the brain’s functional architecture.

To determine which edges were most responsible for 
age differences in weighted global summary metrics and 
weighted node centralities, we performed age comparisons 
of FC strength on each non-zero edge in our graphs. After 
correcting for multiple hypothesis testing (FDR < 0.05, 
56–59 tests), age differences were found in young vs. 
old (5 edges: SM2 ↔ Mix1, DM6 ↔ Mix4, Au ↔ Mix1, 
EC1 ↔ EC2, EC2 ↔ Mix4) and young vs. middle-aged (3 
edges: SM2 ↔ Mix1, EC2 ↔ Mix4, DM1 ↔ Mix3), but 
not in middle-aged vs. old comparisons (Fig. 13, Table 5). 
All but one (i.e., DM1 ↔ Mix3) differences in edge weight 
displayed a reduction in FC with age, and all but one 
(EC1 ↔ EC2) involved one of the multi-system ‘Mixed’ 
ICs. Lowering the statistical threshold to  uncorrected 
p < 0.01 resulted in 8 additional edges showing age differ-
ences (Fig. 13, Table 5), more than half of which were in the 
middle-aged vs. old adult comparison.

Discussion

In the current study, we investigated age differences for 
three primary features in ICA-based RSN decompositions: 
network amplitude, spatial topography of network sources, 
and inter-component functional interactions. For RSN 
amplitude, our findings led to three main conclusions: (1) 

BOLD amplitude is negatively associated with age in all 
networks, and a single process might underly these global 
amplitude trends; (2) sensorimotor networks, and not frontal 
or parietal association networks, showed the steepest ampli-
tude reduction with age; (3) compared to young adults, old 
adults showed reduced inter-individual variability in net-
work amplitude. For RSN/component topography, age dif-
ferences in network structure were modest, and except for 
a few clusters in the parietal association areas, represented 
reduced intra-network FC. Finally, our age comparisons of 
inter-component FC revealed a large degree of age invari-
ance in inter-network interactions. Where present, age differ-
ences in inter-component FC were captured by weighted, as 
opposed to unweighted, graph summary metrics. Together, 
weighted graph summary metrics indicate weakened inter-
system (e.g., visual ↔ default mode, somatomotor ↔ atten-
tion) communication in old age, driven by age differences 
in functional communication via ‘Mixed’ (or multi-system) 
network components. To our best knowledge, this is the first 
high-field RS-fMRI study to provide such a comprehensive 
overview of alterations in the human brain’s functional 
architecture for the entire adult lifespan.

Network amplitude and age

Our results showed that healthy cognitive aging was associ-
ated with a reduction of BOLD signal amplitude in every 
brain system. These findings are consistent with two previ-
ous studies that also used ICA to study age effects on FC 
(Allen et al. 2011; Zonneveld et al. 2019). In the first study, 
Allen et al. (2011) showed that aging was associated with a 
widespread reduction in low-frequency BOLD signal power 
(< 0.15 Hz). However, Allen et al. (2011) focused predom-
inantly on maturation and early aging, with 80% of their 
sample falling in the 13–30 age range, and only 7 (~ 1.2%) 
subjects older than 50 at the time of data collection. In the 
second study, Zonneveld et al. (2019) found that advanced 
age was associated with lower mean signal amplitude in 
most RSNs; however, the authors did not study the entire 
adulthood and sampled older adults exclusively.

In the current study, we demonstrated that the fMRI sig-
nal amplitude of most RSNs declines linearly throughout 
the entire adult lifespan. For network components with non-
linear trajectories, our results suggest a rapid reduction of 
BOLD amplitude in young adulthood, followed by a more 
gradual decline in middle and old age. Such non-linear aging 
patterns are not in agreement with most structural imag-
ing work, which tends to show rapid tissue deterioration in 
old, as opposed to young adults (Aghamohammadi-Sereshki 
et al. 2019; Lebel et al. 2010; Malykhin et al. 2017; Piet-
rasik et al. 2020; Raz et al. 2004, 2005, 2010). Furthermore, 
we demonstrated that a single source of variance could 
explain age differences in BOLD amplitude in most RSNs, 
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suggesting that a common set of biological processes might 
be responsible for these BOLD amplitude effects. According 
to our results, the largest young vs. old amplitude differ-
ences were localized primarily within visual and somato-
motor RSNs. Because previous structural imaging studies 
showed that GM in the primary sensorimotor regions is not 
as vulnerable to age-related atrophy as frontal GM (Fjell 
et al. 2009a, b; Leong et al. 2017; McDonald et al. 2009; 
Raz et al. 1997, 2004, 2005, 2010; Resnick et al. 2003), it 
is unlikely that cortical atrophy is the only cause of declin-
ing RSN amplitude in old age. Finally, we would like to 
point out that RSN amplitude among old adults was not only 
smaller but also had lower inter-individual variability.

Most previous studies on the relationship between BOLD 
amplitude and age were task based, and not resting-state 
(Cabeza et al. 2002, 2004; Grady et al. 1994; D’Esposito 
et al. 1999; Fabiani et al. 2014; Gutchess et al. 2005; Hes-
selmann et al. 2001; Hutchinson et al. 2002; Levine et al. 
2000; Logan et al. 2002; Madden et al. 1996; Park et al. 
2003, 2004; West et al. 2019). Experiments that employed 
motor paradigms to investigate age effects on the senso-
rimotor cortex reported: (1) smaller activation clusters in 
old adults (D’Esposito et al. 1999, 2003; Handwerker et al. 
2007; Hesselmann et al. 2001; Mehagnoul-Schipper et al. 
2002; Riecker et al. 2006); (2) age differences in BOLD 
response timing and BOLD response shape (Handwerker 
et al. 2007; Stefanova et al. 2013; Taoka et al. 1998; West 
et al. 2019); and (3) elevated noise levels among the elderly, 
relative to task-evoked activity (D’Esposito et al. 1999; Kan-
nurpatti et al. 2011). In the visual system, a wide variety 
of task-based neuroimaging experiments revealed reduced 
BOLD activation (Grady et al. 1994; Fabiani et al. 2014; 
Ross et al. 1997; West et al. 2019; Wright and Wise 2018). 
These age effects were detected not only in fMRI experi-
ments but also in Positron Emission Tomography (PET) 
and functional Near-Infrared Spectroscopy (fNIRS) stud-
ies, across a wide variety of visual paradigms, ranging from 
pure perception to face matching, working/episodic memory, 
and visual attention (Ances et al. 2009; Buckner et al. 2000; 
Cabeza et al. 2004; Fabiani et al. 2014; Grady et al. 1994; 
Handwerker et al. 2007; Hutchison et al. 2013; Levine et al. 
2000; Li et al. 2015; Madden et al. 1996; Park et al. 2003; 
Rieck et al. 2015; Ross et al. 1997; Spreng et al. 2010; Ward 
et al. 2015; West et al. 2019). Age differences in activa-
tion amplitude were also identified in brain regions belong-
ing to the default system (Grady et al. 2006; Lustig et al. 
2003; Miller et al. 2008; Persson et al. 2007; Sambataro 

et al. 2010). However, the DMN’s activity differences dur-
ing task-based studies were reported as reduced or failed 
deactivation in old adults since the default system is more 
active at rest than during cognitively demanding tasks (Park 
and Reuter-Lorenz 2009; Persson et al. 2007, 2014; Raichle 
and Snyder 2007). The same biological changes might be 
responsible for amplitude differences in both resting-state 
and task-based fMRI research. This idea is supported by 
evidence from Yan et al. (2011), who showed that—at least 
in the visual cortex—the magnitude of RS-fMRI fluctuations 
was predictive of task-induced activation.

Each brain region’s BOLD signal time course represents 
a complex interplay of four dynamic factors: local blood 
volume, rate of local blood flow, local vascular reactiv-
ity, and local rate of cerebral metabolic oxygen utilization 
 (CMRO2) (Cohen et al. 2004; Kim 2018; Kim and Ogawa 
2012; Uludağ and Blinder 2018; Uludağ et al. 2009; Wright 
and Wise 2018). Reduced BOLD amplitude in old adults 
can be driven by lower cerebral blood flow (CBF), lower 
cerebrovascular reactivity (CVR), or higher  CMRO2. It is 
well documented that aging causes substantial changes in the 
cerebral vasculature, including stiffening of the vessel walls, 
reduction of the capillary density, and thickening of the 
capillary basement membrane (for reviews see, D’Espotio 
et al. 2003; Farkas and Luiten 2001; Wright and Wise 2018). 
In vivo work using PET and Arterial Spin Labeling (ASL) 
methods showed that aging individuals display lower CBF 
and lower CVR (Aanerud et al. 2012; Beason-Held et al. 
2008; Bertsch et al. 2009; Chen et al. 2011; Galiano et al. 
2019; Hutchison et al. 2013; Kety 1956; Liu et al. 2013; Lu 
et al. 2011; Melamed et al. 1980; Peng et al. 2014; Wright 
and Wise 2018; Yamaguchi et al. 1986). Consistent with our 
non-linear aging trajectories that suggest a steeper decline 
of BOLD amplitude from young to middle vs. middle to old 
adulthood, some studies reported a more rapid CBF decline 
in adolescents than in middle-aged or old adults (Biagi et al. 
2007; Frackowiak et al. 1980; Zhang et al. 2017). Given 
such converging evidence, it is plausible that age effects 
on BOLD amplitude are driven by cardiovascular risk fac-
tors (Aanerud et al. 2012; D’Esposito et al. 2003; Farkas 
and Luiten 2001; Gagnon et al. 2015; Hillman, 2014; Kety 
et al. 1956; Liu 2013; Melamed et al. 1980; Zonneveld et al. 
2019). For instance, a recent whole-brain RS-fMRI study 
by Zonneveld et al. (2019) reported a positive relationship 
between BOLD signal amplitude and systolic blood pres-
sure, lending support to the notion that age effects on RSN 
amplitude are driven by cardiovascular risk factors (Aanerud 
et al. 2012; D’Esposito et al. 2003; Farkas and Luiten 2001; 
Gagnon et al. 2015; Hillman, 2014; Kety et al. 1956; Liu 
2013; Melamed et al. 1980; Zonneveld et al. 2019). How-
ever, it is unlikely that age effects on our RSN amplitude 
measures were driven exclusively by age differences in 
blood pressure. Only 1 volunteer in our middle-aged cohort 

Fig. 5  L1 fractional polynomial regression plots showing relation-
ships between age and RS-fMRI amplitude in all a default, b atten-
tion-related, and c mixed components. Red arrows represent relative 
differences in resting-state fluctuation amplitude between a median 
25-year-old and a median 75-year-old

◂
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had a history of elevated blood pressure, while the other 30 
did not. Nonetheless, when compared to young adults, our 
middle-aged volunteers displayed lower group-level meas-
ures of RSN amplitude in multiple network components. 
Furthermore, a comparison of RSN amplitude between old 
adults with a history of high blood pressure to those without 
did not reveal any amplitude differences (all uncorrected 
ps > 0.10). It is worth noting, however, that only individu-
als with no history of high blood pressure or those whose 
high blood pressure was controlled by prescribed medica-
tions or lifestyle adjustments were recruited for our study. 
To what extent our RSN amplitude results might generalize 
to a broader population with a more severe history of car-
diovascular disease is a topic that merits further research.

In addition to vascular factors, it is plausible that the 
aging process affects  CMRO2, modulating the oxy-/deoxy-
hemoglobin ratio in the regional cerebral vasculature, which 
in turn affects the fMRI-measured  T2

* contrast. Unlike CBF 
and CVR,  CMRO2 is a direct measure of neuronal meta-
bolic demands (Cohen et al. 2004; D’Espotio et al. 2003; 
Kim 2018; Kim and Ogawa 2012; Uludağ and Blinder 2018; 
Wright and Wise 2018), and age differences in  CMRO2 
likely represent differences in spiking rates and neurotrans-
mitter trafficking (D’Espotio et al. 2003; Kim and Ogawa 
2012; Logothetis et al. 2001). Unfortunately, human imaging 
literature is inconclusive on the direction of  CMRO2 changes 

in healthy aging: some studies (e.g., Aanerud et al. 2012) 
reported lower  CMRO2 in old adults, while others reported 
the opposite pattern (e.g., Lu et al. 2011; Peng et al. 2014). 
Additional research, employing quantitative high-resolution 
(1.8-mm isotropic or less) fMRI techniques, is needed to 
determine the exact cause of brain-wide age differences in 
RSN amplitude that were observed in the current work.

Functional connectivity and age

By combining GIG-ICA with sparse graphical methods, we 
demonstrated a substantial degree of age invariance in net-
work architecture, a result that is in agreement with recent 
non-ICA-based RS-fMRI research (e.g., Chan et al. 2017; 
Grady et al. 2016; Han et al. 2018). Specifically, almost 
half of our network components displayed no age differ-
ences in component structure, and among the ones that did, 
age effects were captured by small (2% of IC volume, on 
average) regional clusters. Similarly, age comparisons of 
various unweighted graph summary metrics in our inter-
component FC analyses revealed a relatively age-invariant 
graph structure.

To our knowledge, only three other studies used GICA or 
similar techniques for investigating brain-wide age differ-
ences in network topography (Allen et al. 2011; Huang et al. 
2015; Vij et al. 2018). In the first such study, Allen et al. 
(2011) employed IC scaling methods similar to the ones 
used in our current work. The authors reported declining 
intra-network FC (affecting every network component) with 
age, and those age differences in IC spatial properties could 
not be fully accounted for by age-related volumetric differ-
ences in cortical GM. This is similar to our present results: 
except for a few clusters, age effects on network topogra-
phy could not be fully accounted for by age differences in 
regional GM volume, indicating that FC provides informa-
tion about brain aging beyond what can be explained using 
cortical thickness/volume alone. In the second study, Huang 
et al. (2018) collapsed spatial map intensity values across 
all voxels in a network and computed average intra-network 
FC metrics for the entire IC. The authors reported nega-
tive associations between age and intra-IC FC in 5 RSNs: 
auditory, ventral default mode, right executive control, 
sensorimotor, and visual medial. No positive associations 
between age and spatial map intensity were detected. How-
ever, because the authors estimated age relationships for FC 
measures after collapsing them across all of the IC’s vox-
els, it was not clear which of the IC’s spatial regions were 
responsible for the aggregate age effects and whether any of 
their networks displayed age-associated restructuring (i.e., 
some regions positively associated with age, and others 
negatively associated with age). In the third study, Vij et al. 
(2018) reported negative associations between RSN volume 
and age in most functional systems, with sensorimotor (i.e., 

Fig. 6  Principal component representing amplitude variability com-
mon to all RSNs. Since aging trajectories for individuals RSNs were 
either linear or FP1 models, the age relationship trendline for this 
principal component is represented by a model-averaged fit of linear 
and FP1 L1 regression models
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visual, somatomotor, auditory) networks being especially 
vulnerable to age-related decline. However, those negative 
associations between RSN volume and age were not limited 
to sensorimotor regions: executive, salience, and basal gan-
glia networks also displayed lower component volumes in 
aging adults. In addition, 2 network components—posterior 
default mode and central executive control—showed positive 
associations with age, indicating that at least in some cogni-
tive regions of the brain, there is a pattern of intra-network 
reorganization occurring throughout life, as opposed to an 
outright loss of network structure. Despite these insights, it 
should be noted that Vij et al. (2018) defined network vol-
ume as the number of voxels in a subject’s component map 
above a predefined z-statistic cutoff. Consequently, it was not 
clear whether age differences in RSN volumes were caused 
by age differences in network structure or age differences in 
network amplitude.

Rather than z-scoring our IC spatial maps, we nor-
malized our IC spatial maps by BOLD amplitude, which 

more accurately captures true group differences in spa-
tial features (Allen et al. 2011, 2012). We also performed 
voxel-based age comparisons, enabling us to detect both 
increases and decreases in intra-component FC. According 
to our age comparisons of IC topography, the three largest 
age relationship clusters were localized within the frontal 
lobes, and all three showed negative linear relationships 
between the amplitude-normalized SM intensity and age. 
Two of those clusters belonged to the ‘Mixed 4’ network 
component and were located primarily within the bilateral 
inferior frontal gyrus and bilateral orbitofrontal cortex. 
The third cluster represented bilateral anterior cingulate 
and bilateral paracingulate regions of the DMN’s frontal 
subsystem. In addition to frontal lobes, we identified age 
relationship clusters in the parietal, visual, and temporal 
regions of the brain. Of these, parietal networks deserve 
special attention since only the parietal association cortex 
contained clusters representing both positive and nega-
tive correlations to age, indicating age-related network 

Fig. 7  Clusters with statistical relationships to age for sensorimotor 
network ICs. Each cluster represents brain region(s) with age dif-
ferences in network topography. Regression plots represent voxel-

averaged fractional polynomial follow-ups. Since spatial maps were 
normalized by peak activation amplitude, values close to 1 represent 
network core, while those close to 0 represent network periphery
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Fig. 8  Clusters with statistical relationships to age for the default mode network components. Blue clusters represent negative association to age; 
red clusters represent positive association to age

Fig. 9  Clusters with statistical relationships to age for the attention-related network components. Blue clusters represent negative age relation-
ships; red clusters represent positive age relationships
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restructuring in those regions. A number of recent stud-
ies by other groups, employing different network estima-
tion techniques, also detected complex aging-related net-
work re-wiring in the parietal association cortex (Grady 
et al. 2016; Meunier et al. 2009; Onoda and Yamaguchi 
2013; Park et al. 2010).

Initial imaging evidence for altered network dynamics 
in old age was demonstrated in task-based fMRI and PET 
experiments, which showed an over-recruitment of frontal 
and parietal association cortices in older cohorts in a wide 
variety of cognitive tasks (Cabeza et al. 2002, 2004; Davis 
et al. 2008; Grady et al. 1994; Gutchess et al. 2005; Li et al. 
2015; Logan et al. 2002; Rypma and D’Esposito 2000; Rajah 
and D’Esposito 2005; Schneider-Garces et al. 2010; Spreng 
et al. 2010; Sugiura, 2016). Age effects on network dynam-
ics were reported even in simple motor experiments, during 

which older adults showed greater activity in the ipsilat-
eral somatomotor cortex, supplementary motor and premo-
tor areas, basal ganglia, as well as association regions in 
the parietal cortex (Kim et al. 2010; Riecker et al. 2006; 
Tsvetanov et al. 2015). This additional activity seems to be 
compensatory in nature and plays a vital role in maintaining 
cognitive performance in older adults (Fera et al. 2005; Park 
and Reuter-Lorenz 2009; Rossi et al. 2004; Solé-Padullés 
et al. 2006; Schneider-Garces et al. 2010).

Recently, interest has grown in graph theory and its abil-
ity to summarize age effects on the brain’s functional archi-
tecture (Rubinov and Sporns 2010; Damoiseaux 2017; Wig 
2017). In general, brain-aging studies that employed graphi-
cal models to study FC indicate functional dedifferentiation 
among old adults, typically manifesting as a less distinct 
or less stable grouping of certain brain areas into network 

Fig. 10  Clusters with statistical relationships to age for multi-system (i.e., ‘Mixed’) network components. All statistically significant clusters in 
‘Mixed’ ICs showed negative associations to age
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communities (Chan et al. 2014; Chong et al. 2019; Geerligs 
et al. 2015; Grady et al. 2016; Keller et al. 2015; Onoda 
and Yamaguchi 2013; Spreng et al. 2016; Vij et al. 2018). 
However, since almost all previous FC studies that relied on 
graphical methods estimated their graphs using bivariate, 
not partial correlations, their results may have been con-
founded by indirect connections (Epskamp and Fried 2018; 
Smith et al. 2011). To our best knowledge, this is the first 
study to combine sparse graphical estimation methods with 
ICA-based network extraction to investigate age effects on 
inter-component FC.

Consistent with other graph-based FC studies of brain 
aging, our weighted efficiency-related graph summary 
metrics (i.e., global efficiency, characteristic path length, 
network diameter, and network radius) suggest that func-
tional communication in the human brain becomes increas-
ingly inefficient with age  [Efficiencyyoung > Efficiency-
middle-aged > Efficiencyold]. Furthermore, as evidenced by 
weighted closeness and betweenness centralities, age dif-
ferences were primarily characterized by a widespread 
reduction in network integration in old relative to young 
adults—and not by any particular IC’s importance to the 
overall information flow in the human brain. Despite this 
broad loss of network efficiency in old age, our unweighted 
graph summary metrics indicate that the fundamental net-
work architecture is stable in young, middle, and late adult-
hood. We also want to point out that age differences in 
the overall edge weight were more pronounced in young 
vs. middle-aged comparisons than in middle-aged vs. old 
comparisons indicating relatively early aging effects on FC. 

Fig. 11  Graphical representation of direct between-component con-
nectivity separated by age group. Only positive correlations are 
shown. Edge thickness represents functional connectivity strength 
(i.e., magnitude of SCAD-regularized partial correlations). Node size 
of each network component represents its unweighted eigenvector 
centrality. Coordinates depict the number of within-system (left num-

ber) and between-system (right number) connections. Node colors 
represent functional systems: blue, somatomotor (SM); red, visual 
(V); green, auditory (Au); cyan, default mode (DM); yellow, dorsal 
attention (DA); magenta, executive control (EC); black, mixed (Mix). 
See Fig. 2 for anatomical profiles of individual network components

Fig. 12  A core set of inter-component connections that were pre-
sent in every age group (i.e., young, middle-aged, old). Edge thick-
ness represents connectivity strength, collapsed across age groups. 
SM, somatomotor (blue); V, visual (red); Au, auditory (green); DM, 
default mode (cyan); DA, dorsal attention (yellow); EC, executive 
control (magenta); Mix, mixed (black)
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In general, intra-system FC strength was more vulnerable 
to aging than inter-system FC strength; however, certain 
inter-system connections, especially those connected to the 
‘Mixed’ ICs, showed age-associated FC decline that was 
evident by middle adulthood.

Contrary to some previous research (e.g., Betzel et al. 
2014; Chan et al. 2014; Geerligs et al. 2015; Spreng et al. 
2016), we did not find substantial evidence for greater inter-
system integration in old age: almost all edges with age dif-
ferences in our FDR-corrected age comparisons represented 
connections between one of the clearly defined RSNs and 
one of the ‘Mixed’ (i.e., multi-system) RSNs. Since those 
‘Mixed’ RSNs act as hubs that interconnect multiple func-
tional systems with each other, declining FC between these 
multi-system RSNs and other systems is also indicative of 
less efficient network architecture. Of particular note here is 
the loss of connectivity between the DM6 and Mix4 com-
ponents with age. Structurally, the Mix4 IC showed the larg-
est topographical age differences, especially in the bilateral 
inferior frontal gyrus. As these regions become increasingly 

disconnected from the rest of the component with age, the 
entire IC loses its connectivity to the DM6 IC. With a 
less strict statistical threshold (uncorrected p < 0.010), we 
identified additional age differences in inter-component 
FC, primarily among various default mode sub-systems 
(Andrews-Hanna et al. 2014; Christoff et al. 2016). Early 
FC experiments showed that communication between distant 
areas of the DMN, especially between the medial frontal 
and posterior cingulate/retrosplenial hubs, declines with age 
(Andrews-Hanna et al. 2007; Damoiseaux et al. 2008; Wu 
et al. 2011). More recent work, employing not only cross-
sectional but also longitudinal designs, produced mixed 
results with some groups supporting the early findings (e.g., 
Geerligs et al. 2015; Grady et al. 2016; Ng et al. 2016) and 
others finding no age effects (Hirsiger et al. 2016; Persson 
et al. 2014). Our inter-component FC results demonstrated a 
relatively complex pattern of age-related network reorgani-
zation within this system. Age-related shifts in the DMN’s 
organization could represent age differences in spontaneous 
thought processes or changes in network architecture away 

Table 3  Global graph summary metrics, separated by age group, for binary and weighted inter-component functional connectivity

***FDR < 0.001; **FDR < 0.010; *FDR < .050; ~ FDR < 0.100

Binarized Weighted

Young Middle Old Statistical differences Young Middle Old Statistical differences

Density 0.2095 0.2476 0.2095 None 0.0443 0.0419 0.0328 Young > Old***
Middle > Old***

Efficiency 0.5413 0.5698 0.5290 None 0.1145 0.0975 0.0840 Young > Old***
Young > Middle***
Middle > Old*

Transitivity 0.2195 0.3974 0.3373 None 0.0365 0.0611 0.0489 None
Radius 3 2 3 None 12.7969 16.0334 18.3483 Young < Old**

Young < Middle*
Diameter 4 4 4 None 21.5832 25.7084 32.4533 Young < Old***

Young < Middle*
Middle < Old*

Characteristic path length 2.0862 1.9864 2.1859 None 10.5684 12.3702 14.3148 Young < Old***
Young < Middle**
Middle < Old*

Average edge weight N/A N/A N/A N/A 0.2117 0.1692 0.1565 Young > Old**
Young > Middle*

Intra-system edge density 0.6000 0.7600 0.7600 Young < Old**
Young < Middle*

0.1589 0.1522 0.1318 Young > Old**
Middle > Old*

Inter-system edge density 0.1568 0.1784 0.1351 None 0.0289 0.0270 0.0194 Young > Old**
Middle > Old**

Average weight of intra-sys-
tem connections

N/A N/A N/A N/A 0.2648 0.2003 0.1734 Young > Old***
Young > Middle**

Average weight of inter-sys-
tem connections

N/A N/A N/A N/A 0.1842 0.1513 0.1436 None

Degree centralization  0.1553 0.2237 0.1553 None N/A N/A N/A N/A
Closeness centralization 0.1673 0.2977 0.3070 Young < Old ~

Young < Middle ~
N/A N/A N/A N/A

Betweenness centralization 0.1249 0.1424 0.1566 None N/A N/A N/A N/A
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from long-range communication to favor anatomically proxi-
mal short-range communication (as suggested by Tomasi 
and Volkow 2012). Even though our data suggest age differ-
ences in the architecture of the default mode system, these 
findings should be interpreted with caution since they did not 
survive the FDR correction for multiple hypothesis testing.

Limitations

In light of our results on network amplitude, caution 
should be exercised when interpreting FC measures with-
out additional knowledge of how non-BOLD contribution 
to the fMRI time series is affected in healthy aging. For 
similar reasons, findings from other studies on functional 

dedifferentiation with age should also be interpreted with 
caution, since age effects on BOLD amplitude (and conse-
quently temporal SNR) might be responsible for lower cor-
relation strength in old adults, which in turn would result in 
less stable estimates of network community structure. Due 
to technical and computational limitations, we relied on lin-
ear and quadratic regression models in our initial screening 
for age differences in components’ topography. We do not 
consider this to be a major issue in our study as most linear, 
curved, and u-shaped patterns can be detected using quad-
ratic and linear fits. To further mitigate the downsides of 
linear and quadratic fits (Aghamohammadi-Sereshki et al. 
2019; Fjell et al. 2010), all clusters showing statistical age 

Table 4  Age differences in node centrality for weighted inter-component functional connectivity graphs

Abbreviations: SM, somatomotor; Vis, visual; Au, auditory; DM, default mode; DA, dorsal attention; EC, executive control; Mix, mixed
**FDR < 0.010; *FDR < 0.050

RSN Degree Closeness Betweenness Eigenvector

Young/middle/old Statistical 
differences

Young/middle/old Statistical 
differences

Young/middle/old Statistical 
differences

Young/middle/old Statistical 
differences

SM1 0.584/0.633/0.514 None 1.752/1.415/1.086 **Y > O, 
*Y > M

0.042/0.021/0.026 None 0.115/0.113/0.056 None

SM2 1.248/1.196/0.667 **Y > O, 
*M > O

2.153/1.784/1.364 **Y > O, 
*Y > M

0.216/0.190/0.084 None 0.252/0.194/0.110 *Y > O

SM3 0.317/0.566/0.454 None 1.647/1.483/1.213 **Y > O 0.000/0.000/0.000 None 0.082/0.107/0.055 None
Vis1 1.429/1.227/1.155 **Y > O 2.135/1.912/1.796 *Y > O, 

*Y > M
0.205/0.258/0.305 None 0.311/0.273/0.336 None

Vis2 0.754/0.709/0.665 None 1.839/1.542/1.434 **Y > O, 
*Y > M

0.047/0.037/0.063 None 0.196/0.146/0.189 None

Vis3 0.701/0.662/0.652 None 1.802/1.566/1.457 **Y > O, 
*Y > M

0.000/0.000/0.000 None 0.177/0.144/0.193 None

Vis4 0.911/0.847/0.663 None 1.748/1.545/1.314 *Y > O 0.058/0.032/0.011 None 0.172/0.142/0.141 None
Au 0.940/0.749/0.475 **Y > O 1.808/1.444/1.198 **Y > O, 

*Y > M
0.053/0.042/0.047 None 0.147/0.115/0.083 None

DM1 1.307/1.390/1.267 None 2.251/2.069/1.971 *Y > O 0.163/0.195/0.195 None 0.300/0.372/0.461 **Y < O
DM2 0.693/0.993/0.894 *Y < M 2.154/2.026/1.857 *Y > O 0.037/0.232/0.190 None 0.198/0.298/0.370 **Y < O, 

*Y < M
DM3 0.956/0.876/0.649 None 1.852/1.614/1.444 *Y > O 0.037/0.068/0.000 None 0.165/0.205/0.238 None
DM4 0.514/0.385/0.265 None 1.617/1.221/1.224 *Y > O, 

*Y > M
0.005/0.000/0.000 None 0.110/0.111/0.115 None

DM5 1.143/1.228/1.130 None 2.025/1.755/1.586 *Y > O 0.079/0.084/0.195 None 0.255/0.305/0.321 None
DM6 0.837/0.580/0.409 *Y > O 1.771/1.490/1.301 **Y > O 0.058/0.011/0.000 None 0.145/0.130/0.150 None
DA 1.129/1.238/1.214 None 2.340/1.961/1.967 *Y > O, 

*Y > M
0.158/0.116/0.237 None 0.278/0.306/0.390 *Y < O

EC1 0.875/0.885/0.611 None 1.793/1.609/1.400 *Y > O 0.011/0.047/0.042 None 0.209/0.253/0.215 None
EC2 0.686/0.513/0.262 **Y > O 1.657/1.483/1.302 *Y > O 0.016/0.016/0.000 None 0.158/0.164/0.105 None
Mix1 1.076/0.864/0.579 **Y > O 2.230/1.720/1.361 **Y > O, 

*Y > M
0.153/0.084/0.068 None 0.262/0.184/0.109 *Y > O

Mix2 1.071/0.779/0.471 **Y > O 2.188/1.725/1.542 **Y > O, 
*Y > M

0.105/0.032/0.026 None 0.261/0.210/0.175 None

Mix3 0.705/0.793/0.550 None 2.000/1.807/1.379 **Y > O 0.079/0.126/0.090 None 0.132/0.173/0.178 None
Mix4 0.752/0.488/0.221 **Y > O 1.556/1.389/1.039 **Y > O 0.005/0.000/0.000 None 0.132/0.111/0.069 None
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differences were followed up with fractional polynomial 
modeling.

It is important to keep in mind that head motion has been 
shown to modulate FC in multiple RSNs (Mowinckel et al. 
2012; Power et al. 2012; Van Dijk et al. 2012). As is typi-
cally reported in the field (e.g., Madan 2018), our older par-
ticipants were not as still inside the scanner as younger ones 
(see Suppl. Table 3). Motion correction methods based on 
spatial ICA provide a balanced approach for artefact removal 
(Ciric et al. 2017; Griffanti et al. 2014; Pruim et al. 2015b). 
To further ensure thorough removal of dominant physio-
logical and motion artifacts, we performed aggressive, as 
opposed to soft, removal of global noise components and 
used partial, as opposed to full, correlations for studying 
inter-component FC. Since we employed fairly rigorous 
denoising procedures, we believe that our findings represent 
non-artefactual age differences in network properties. This is 
further supported by our young vs. middle-aged comparisons 

of network amplitude and inter-component FC: both sets of 
analyses showed substantial age differences even though 
head motion parameters did not differ between the two age 
groups (see Suppl. Table 3). Nonetheless, acquisitions that 
employ customized physical restrains (Power et al. 2019) 
and direct measures of physiological noise (Birn et al. 2006, 
2008; Chang et al. 2009; Glover et al. 2000) are needed to 
confirm the neurobiological origin of our findings.

Furthermore, it is plausible that negative connections 
might contain additional information about the effects of 
age on FC. However, incorporating anti-correlations into 
our inter-component graph-based comparisons would have 
produced summary metrics that are difficult to interpret 
(Rubinov and Sporns 2010), while separate age compari-
sons of negative edges do not integrate anti-correlations 
into the broader connectome. Consequently, we did not 
study the effects of age on negative connections. As a refer-
ence for future research, we provide descriptive visuals of 

Fig. 13  Graphical representations of uncorrected (top) and FDR-
corrected (bottom) age differences in inter-component functional 
connectivity. Red edge color represents lower functional connectiv-
ity in the older group; blue edge color represents greater functional 
connectivity in the older group. Edge thickness represents the mag-

nitude of functional connectivity differences in each age compari-
son.  Nodes  represent  network components: SM, somatomotor; V, 
visual; Au, auditory; DM, default mode; DA, dorsal attention; EC, 
executive control; Mix, mixed. See Fig. 2 for anatomical profiles of 
each node/RSN
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SCAD-estimated negative connections in the Supplementary 
Materials (Suppl. Figure 10).

We also need to emphasize that our study was cross-
sectional, and a longitudinal sample is needed to confirm 
our results as real aging, not cohort, effects. Lastly, future 
research would benefit from addressing the issue of sex dif-
ferences in brain aging. Even though we did not attain suf-
ficient statistical power to perform sex comparisons in our 
inter-component FC graphs (< 15 males in middle-aged and 
old adult groups), we were able to test for male vs. female 
differences in network topography and BOLD amplitude. 
Those analyses did not reveal any statistically significant 
sex effects or interactions. However, in those analyses, too, 
potential consequences of limited statistical power come to 
mind: it is plausible that sex differences in brain aging are 
subtle, and a larger sample is necessary to detect them.

Supplementary Information The online version contains supplemen-
tary material available at https ://doi.org/10.1007/s0042 9-021-02226 -7.
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