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ABSTRACT
Objectives: With an increasing aging population, it is important to understand biological markers of
aging. Subcortical volume is known to differ with age; additionally considering shape-related
characteristics may provide a better index of age-related differences. Fractal dimensionality is more
sensitive to age-related differences, but is borne out of mathematical principles, rather than
neurobiological relevance. We considered four distinct measures of shape and how they relate to
aging and fractal dimensionality: surface-to-volume ratio, sphericity, long-axis curvature, and surface
texture.
Methods: Structural MRIs from a combined sample of over 600 healthy adults were used to measure
age-related differences in the structure of the thalamus, putamen, caudate, and hippocampus. For
each, volume and fractal dimensionality were calculated, as well as four distinct shape measures.
These measures were examined for their utility in explaining age-related variability in brain structure.
Results: The four shape measures were able to account for 80%–90% of the variance in fractal
dimensionality. Of the distinct shape measures, surface-to-volume ratio was the most sensitive
biomarker.
Conclusion: Though volume is often used to characterize inter-individual differences in subcortical
structures, our results demonstrate that additional measures can be useful complements. Our results
indicate that shape characteristics are useful biological markers of aging.
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Background and objectives

As the world’s aging population continues to increase, it is
important to gain a better understanding of biological
markers of aging. A variety of markers have been found to be
useful in this regard—including epigenetic, physiological,
neuroanatomical, and cognitive measures (Bae et al., 2013;
Chen et al., 2015; Hannum et al., 2013; Horvath, 2013; Park et
al., 2002; Reagh & Yassa, 2017; Salthouse, 2011; Small et al.,
2011; Walhovd et al., 2011). With respect to the brain, it is well
established that there are age-related differences in the vol-
ume of subcortical structures (Allen, Bruss, Brown, & Damasio,
2005; Goodro, Sameti, Patenaude, & Fein, 2012; Inano et al.,
2013; Long et al., 2012; Potvin, Mouiha, Dieumegarde, & Duch-
esne, 2016; Raz et al., 2005; Tamnes et al., 2013; Walhovd et al.,
2005, 2011; Yang et al., 2016). However, it is important to
acknowledge that volume is a summary statistic of the three-
dimensional segmented structure and that it may be neglect-
ing other facets of the structure that also vary with age, such
as morphological (i.e. shape-related) characteristics. More
directly, it is relatively unlikely that volumetric changes in sub-
cortical structures would change without concurrent changes
in the shape of the structure—that is, for a structure to main-
tain the same general form and merely ‘scale’ in size. As such,
any inter-individual characteristic associated with volumetric
differences, such as aging or neurodegenerative diseases,
would likely be identified by simultaneously considering both
volumetric and morphological properties (additional meas-
ures, such as neuropsychological tests and genetic risk factors
would also be beneficial). It is an open question, however, as
to what measure could be used along with volume to charac-
terize these morphological properties, which are also

neurobiologically relevant. Here we sought to examine the
sensitivity of different morphological measures in indexing
healthy age-related differences in subcortical structures and
serving as more robust neuroanatomical markers of aging.

A recent study by Madan and Kensinger (2017a) suggested
that fractal dimensionality, a measure of structural complexity,
might be such a measure. In their study, fractal dimensionality
indexed age-related differences better than volume, cor-
rected for intracranial volume (i.e. ICV-corrected). Fractal
dimensionality measures the volumetric properties across dif-
ferent spatial scales (i.e. resolution; see Figures 1 and 2 of
Madan & Kensinger, 2016), allowing for a scale invariant calcu-
lation of morphological characteristics. This measure was
found to be generally more sensitive to age-related variability
in the subcortical structures than volume—it has been dem-
onstrated to be a useful mathematical approach to character-
izing complex structures in many domains (Di Ieva, Grizzi,
Jelinek, Pellionisz, & Losa, 2014, 2015; Lopes & Betrouni,
2009). However, it is unlikely that fractal dimensionality is
directly related to neuroanatomical changes—that is, the
brain is not changing in fractal dimensionality with age, but
rather that there are not-yet-understood systematic changes
that fractal dimensionality is sensitive to detecting. If we
accept that subcortical structures vary in volume in relation to
aging, one must consider how this occurs within the brain as
constrained by biology. If the thalamus is decreasing in vol-
ume due to age atrophy, it cannot simply ‘scale’ in-place while
keeping the same relative shape. First, subcortical structures
share boundaries with other structures—gaps do not appear
throughout the brain due to these volumetric decreases—so
the shape of structures must be inter-related. Second and
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relatedly, it is likely that the large-scale structural properties of
these subcortical structures must also change in their broad
curvature.

Examining the differences in explained variability (R2)
reported in Madan and Kensinger (2017a, Figure 2) for vol-
ume and fractal dimensionality, as well as the relationship
between volume and fractal dimensionality (Madan & Ken-
singer, 2017a, Figure 5) it appears that fractal dimensional-
ity is particularly beneficial, beyond volume, in measuring
age-related differences in the structure of the thalamus,
putamen, caudate, and hippocampus (see Figure 1 for visu-
alizations of these structures). Here we consider four meas-
ures that would each be indexed by fractal dimensionality,
but would not be detected by volume: surface-to-volume
ratio, sphericity, long-axis curvature, and surface texture.
Each of these discretizes shape-related information based
on the relative scale of potential structural complexity
characteristics.

(1) The ratio of surface area to volume can be used as a
coarse measure of a structure’s compactness and has
long been used in characterizing the properties of 3D
structures (i.e. stereology) (Lewis, 1976; Weibel, Kistler,
& Scherle, 1966). This ratio value will be relatively small
for compact structures, but will be markedly larger for a
structure that is more flattened or otherwise spread
out.

(2) Sphericity, a measure of how closely a shape resembles
a sphere, measured as the ratio of the surface area of a
sphere with the same volume as the structure, relative

to the actual surface area of the structure (Wadell,
1933, 1935; Wentworth, 1933).

(3) Long-axis curvature was measured by first determining
the ‘mean meridian’, a curved line that went through
the central mass of the structure, and has a long-stand-
ing history in the characterization of biological struc-
tures (Blum, 1973; Yushkevich, Zhang, & Gee, 2006,
2007). Long-axis curvature was operationalized as the
ratio between the lengths of a curved line (spline) that
travels along the mean meridian of the structure, con-
necting the most extended ends of the structure and
traveling through the central mass of the structure, and
a line that connects the two ends of the structure using
the shortest straight-line distance.

(4) A remaining morphological feature is the surface tex-
ture or roughness of the structure. This measure would
correspond higher-frequency in the structure’s shape
and has previously been investigated in relation to frac-
tal dimensionality in other fields of research (e.g.
Ga

!
rding, 1988; Lespessailles, Chappard, Bonnet, & Ben-

hamou, 2006; Lopes et al., 2011; Pentland, 1985; Sarker
& Chaudhuri, 1992; Thomas, Ros!en, & Amini, 1999).
Here we quantified the surface texture of a structure by
reconstructing the subcortical structure’s topological
frequency using spherical harmonics (SPHARM) (Chung
et al., 2008; Gerig, Styner, Shenton, & Lieberman, 2001a,
b; Madan & Kensinger, 2017b; Shen, Huang, Makedon,
& Saykin, 2007, 2009), based on Fourier series mathe-
matics. SPHARM has also been related to the fractal
dimensionality of brain structures (Madan & Kensinger,

Figure 1. Illustration of the process used to calculate the surface mesh and texture. Glass brain 3D reconstruction constructed based on Madan (2015).
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2017b; Yotter, Nenadic, Ziegler, Thompson, & Gaser,
2011). By comparing the surface area between SPHARM
surfaces with differing maximum numbers of degrees
we can measure the surface texture (roughness) of
structures. This ratio is essentially a comparison
between the surface area of a smoothed version of the
structure that nonetheless captures the global shape,
relative to the surface area of a mesh that does capture
the nuances and local features of the structure. The dif-
ference between these two sets of coordinates effec-
tively represents a ‘displacement map’ (Blinn, 1978;
Lee, Moreton, & Hoppe, 2000).

By characterizing these distinct morphological measures of
subcortical structures, we sought to both attain a better
understanding of the shape-related features that were
indexed by fractal dimensionality, as well as potentially deter-
mine a more precise measure of morphology that is further
sensitive to as a neuroanatomical marker of aging. Here we
evaluated these measures in explaining age-related variability
in brain structure, and their relation to fractal dimensionality,
using two open-access magnetic resonance imaging (MRI)
datasets with a combined sample size of over 600 healthy
adults across the lifespan.

Research design and methods

Datasets

Sample 1 (OASIS) consisted of 314 healthy adults (196
females), aged 18–94, from the publicly available Open Access

Series of Imaging Studies (OASIS) cross-sectional dataset (Mar-
cus et al., 2007; http://www.oasis-brains.org). Participants
were recruited from a database of individuals who had (a) pre-
viously participated in MRI studies at Washington University,
(b) were part of the Washington University Community, or (c)
were from the longitudinal pool of the Washington University
Alzheimer Disease Research Center. Participants were
screened for neurological and psychiatric issues; the Mini-
Mental State Examination (MMSE) and Clinical Dementia Rat-
ing (CDR) were administered to participants aged 60 and
older. To only include healthy adults, participants with a CDR
above zero were excluded; all remaining participants scored
25 or above on the MMSE. Multiple T1 volumes were acquired
using a Siemens Vision 1.5 T with a MPRAGE sequence; only
the first volume was used here. Scan parameters were: TR =
9.7 ms; TE = 4.0 ms; flip angle = 10!; voxel size = 1.25 £ 1 £
1 mm. Volumetric and fractal dimensionality analyses from
the OASIS dataset were previously reported in Madan and
Kensinger (2017a).

Sample 2 (DLBS) consisted of 315 healthy adults (198
females), aged 20–89, from wave 1 of the Dallas Lifespan Brain
Study (DLBS), made available through the International Neu-
roimaging Data-sharing Initiative (INDI; Mennes, Biswal, Cas-
tellanos, & Milham, 2013) and hosted on the the
Neuroimaging Informatics Tools and Resources Clearinghouse
(NITRC; Kennedy, Haselgrove, Riehl, Preuss, & Buccigrossi,
2016) (http://fconç1000.projects.nitrc.org/indi/retro/dlbs.
html). Participants were screened for neurological and psychi-
atric issues. No participants in this dataset were excluded. All
participants scored 26 or above on the MMSE. T1 volumes

Figure 2. Variance explained in age, for each of the structures, morphological measures, and samples considered. ‘Shape’ is an aggregate of SV, Sph, LAc, and Tex.
Key: Vol, volume; FD, fractal dimensionality; SV, surface-to-volume ratio; Sph, sphericity; LAc, long-axis curvature; Tex, shape texture; see Table 1 for additional details and comparisons.
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were acquired using a Philips Achieva 3 T with a MPRAGE
sequence. Scan parameters were: TR = 8.1 ms; TE = 3.7 ms;
flip angle = 12!; voxel size = 1 £ 1 £ 1 mm. See Kennedy,
Rodrigue, Bischof, Hebrank, Reuter-Lorenz, and Park (2015)
and Chan, Park, Savalia, Petersen, and Wig (2014) for further
details about the dataset.

Segmentation and volumetric analyses

All structural MRIs were processed using FreeSurfer 5.3.0
on a machine running CentOS 6.6 (Fischl, 2012; Fischl &
Dale, 2000; Fischl et al., 2002). FreeSurfer’s standard pipe-
line was used (i.e. recon-all). Segmented volumes from all
participants were visually inspected but no manual edits
were made. Data from two additional participants were
excluded from Sample 1 (OASIS) due to poor reconstruc-
tions; none were excluded from Sample 2 (DLBS). Visual
inspections were conducted using Mindcontrol (Keshavan
et al., in press).

FreeSurfer’s segmentation procedure produces labels for
the subcortical structures within a common segmentation vol-
ume (Fischl et al., 2002, 2004). Volumes for subcortical struc-
tures were obtained directly from FreeSurfer. Validation
studies have shown that this automated segmentation proce-
dure corresponds well with manual tracing (e.g. Fischl et al.,
2002; Keller et al., 2012; Lehmann et al., 2010). FreeSurfer has
been used in a large number of studies investigating age-dif-
ferences in subcortical structures (e.g. Inano et al., 2013; Long
et al., 2012; Madan & Kensinger, 2017a; Potvin et al., 2016;
Tamnes et al., 2013; Walhovd et al., 2005, 2011; Yang et al.,
2016). Intracranial volume (ICV) was also estimated using
FreeSurfer (Buckner et al., 2004), which has also been shown
to correspond well with manual tracing (Sargolzaei et al.,
2015).

Fractal dimensionality (FD) analyses

The complexity of each structure was calculated using the
calcFD toolbox (Madan & Kensinger, 2016; http://cmadan.
github.io/calcFD/). This toolbox calculates the ‘fractal
dimensionality’ of a three-dimensional (3D) structure, and
is specifically designed to use intermediate files from the
standard FreeSurfer analysis pipeline, here aparc.a2009s
+aseg.mgz. The toolbox has previously been used with
parcellated cortical and subcortical structure, as well as
validated using test-retest data (Madan & Kensinger, 2016,
2017a,b).

We use fractal dimensionality as a measure of the com-
plexity of a 3D structure, i.e. a subcortical structure. Unlike vol-
ume, which corresponds to the ‘size’ of any 3D structure,
fractal dimensionality measures shape information and is
scale invariant (Madan & Kensinger, 2016, 2017a). In other
words, two structures of the same shape could be different in
size and still have the same fractal dimensionality. In fractal
geometry, several approaches have been proposed to quan-
tify the ‘dimensionality’ or complexity of natural structures;
the approach here calculates the Minkowski–Bouligand or
Hausdorff dimension (Kennedy & Lin, 1986; Mandelbrot,
1967). See Madan and Kensinger (2016, 2017a) for further
details on applying fractal dimensionality to characterize cor-
tical and subcortical structures.

Morphological measures of interest

A series of steps were necessary to calculate the four shape
measures used here. The voxel-based segmented structure
was read into MATLAB from FreeSurfer’s ‘aseg’ volume. The
triangulated surface mesh (‘isosurface’) for each subcortical
structure was then estimated using the marching cubes algo-
rithm (Lorenson & Cline, 1987). The mesh was subsequently
smoothed and re-parameterized relative to a sphere using an
isotropic heat diffusion algorithm, as implemented by Chung
(Chung, 2013, 2014; Chung et al., 2008, 2010), over five itera-
tions. A first-order ellipsoid was then fit to the surface vertices
to determine a registration of the structure to standardized
orientation—rather than being oriented based on native
space (Cong et al., 2014; Huang et al., 2007; Shen et al., 2007,
2009), by means of a principal components analysis. The ori-
entation of each structure was then rotated such that the
long-axis corresponded to the major axis of the first-order
ellipsoid. With the structure parameterized relative to a
sphere, the vertex coordinates of the mesh were parameter-
ized consistently with Euler angle conventions, with u (theta)
corresponding to the position relative to the poles of sphere
[0, p] (akin to latitude) and ’ (phi) corresponding to the posi-
tion along the equator [0, 2p] (akin to longitude), as shown in
Figure 1. This re-parameterization of a 3D closed surface to a
sphere was conducted consistently with prior work
(Brechb€uhler, Gerig, & K€ubler, 1995; Chung et al., 2008; Shen
& Makedon, 2006; Staib & Duncan, 1996). As noted earlier, the
poles of the coordinates were defined based on the long-axis
of the structure, irrespective of the orientation of the structure
within the brain, based on the fitted first-order ellipsoid (see
Shen & Makedon, 2006).

For three of the measures (all except for sphericity), values
were subsequently log-transformed. Additionally, since
potential hemispheric differences were not of interest here,
measures were averaged into a single value per structure and
individual, collapsing across hemisphere.

Surface-to-volume ratio (SV)
Here we simply divided the surface area of the constructed
surface mesh of the structure by the volume of the structure
as a coarse measure of the compactness of the structure.

Sphericity (Sph)
The ratio of the surface area of a sphere with the same vol-
ume as the structure, relative to the actual surface area of the
structure (Wadell, 1935), defined as:

C ¼ p
1
3 6Vð Þ

2
3

S

where V represents the volume, S represents the surface area,
andC (Psi) represents the structure’s sphericity.

Long-axis curvature (LAc)
A three-dimensional (3D) smoothing spline was fit to the
mean vertex coordinates of the structure, based on grouping
vertices into 50 bins, with bins based on percentiles of u val-
ues. The length of this spline in 3D space served as the length
of the mean meridian of the structure. A second line was cal-
culated as the straight line between the start and end points
of the spline. As such, if the points along the mean-meridian
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spline lay perfectly along this straight line, the structure would
have no long-axis curvature.

Surface texture (Tex)
Using the Euler angle parameterization of the structure, we
computed a weighted spherical harmonics (SPHARM) repre-
sentation to characterize the structure across different topo-
logical frequencies (Chung, 2013, 2014; Chung et al., 2008,
2010). This approach also attenuates the Gibbs phenomenon
(ringing artifact) that is otherwise introduced by fitting Fourier
series to discontinuous data. Here we calculated the surface
texture as the ratio between the surface areas of a detailed
mesh that includes high-frequency topological properties
(maximum SPHARM degree 30) and a relatively smooth sur-
face that only characterizes low-frequency topology (maxi-
mum SPHARM degree 5). A degree of 5 was selected as an
appropriate threshold for low-frequency shape characteristics
based on the surfaces examined in prior studies (Chung,
2013; Chung et al., 2008; Madan & Kensinger, 2017b). Exam-
ples of these two representations for the thalamus of a repre-
sentative young adult are shown in Figure 1.

Data analyses

Age differences in the subcortical structures was first assessed
using regression models examining the relationships between
age and volume (or fractal dimensionality) of the structure,
with the amount of variance explained (i.e. R2) and Bayesian
Information Criterion (BIC) as the model fitness statistic. A
spline regression was used as Fjell et al. (2010, 2013) demon-
strated that age-related differences in structural measures are
not explained well by linear and quadratic models. A smooth-
ing spline regression was used (smoothing parameter set to
0.1), and in the case of several structural measures (i.e. the
‘Shape’ model, described below), a multiple smoothing-spline
regression procedure was used, as implemented in the Prism
toolbox (Madan, 2016). All regression models reported con-
trolled for the main effect of sex. All regressions with age
were conducted such that the age was the dependent vari-
able, rather than the independent variable (i.e. unlike Madan
& Kensinger, 2017a; Walhovd et al., 2011). The ‘Shape’ model
is the result of a multiple spline regression including the four
distinct shape measures: surface-to-volume ratio (SV), spheric-
ity (Sph), long-axis curvature (LAc), and shape texture (Tex). A
set of regression models combining measures across all four
subcortical structures was also included to provide both an
over-arching set of regression models across the structures, as
well as show the independence vs. collinearity of the age-
related differences across structures.

Volume was ICV-corrected prior to conducting the regres-
sion analyses. ICV-corrected measurements were calculated
as the residual after the measure was regressed for ICV (as in
Madan & Kensinger, 2017a; Walhovd et al., 2011). All shape
measures—fractal dimensionality, surface-to-volume ratio,
sphericity, long-axis curvature, and shape texture—are scale
invariant and thus were not ICV-corrected.

For each regression model, we report both R2, with age (or
fractal dimensionality) as the dependent measure, as well as
the Bayesian Information Criterion (BIC). BIC is a model fitness
index that includes a penalty based on the number of free
parameters (Schwarz, 1978). Smaller BIC values correspond to
better model fits. By convention, two models are considered
equivalent if DBIC < 2 (Burnham & Anderson, 2004). As BIC

values are based on the relevant dependent variable, DBIC
values are reported relative to the best-performing model (i.e.
DBIC = 0 for the best model considered).

For the models explaining age-related variability, since
they all have the same dependent variable, DBIC values can
be compared across all subcortical structures and measures.
However, for the models with a subcortical structure’s fractal
dimensionality (FD) as the dependent measure, the DBIC val-
ues cannot be compared directly. Best-fitting models for each
structure (thalamus, putamen, caudate, hippocampus, com-
bined), sample (OASIS, DLBS), and dependent variable (age,
FD) are shown in bold in Table 1.

Equivalent R2 and DBIC values for models that include
more than one measure indicate Prism algorithm (based on
relevance vector regression [RVR]; Tipping, 2000) selected the
same subset of measures, based on the inherent feature
selection (i.e. automatic relevance determination) in RVR. E.g.
for the regression models with FD as the dependent variable,
if volume was a relatively good predictor, models that
included volume along with a shape measure could be based
only on the volume measure after the feature selection. As
such, these models will all yield an identical output as the vol-
ume-only model, since the additional measure was removed.
In these cases, only the simpler model is shown in bold in
Table 1.

Results

Figure 2 and Table 1 show how well each of the morphologi-
cal measures was able to index age-related differences in the
subcortical structures. Surprisingly, the most coarse shape
measure included here, surface-to-volume ratio (SV), per-
formed the best out of the four distinct shape measures.
Moreover, the aggregate ‘Shape’ model that included all four
of the shape measures generally performed only slightly bet-
ter than the surface-to-volume ratio alone. In both samples,
the surface-to-volume ratio explained more age-related vari-
ability in brain structure than fractal dimensionality for the
caudate and hippocampus. Regression models including
shape measures as well as volume (see Table 1), further dem-
onstrate that shape-related characteristics were beneficial
measures of age-related differences in subcortical structure
beyond volumetry.

Sphericity performed more poorly than surface-to-volume
ratio in nearly all cases, despite being closely related meas-
ures. Relatedly, the long-axis curvature performed more
poorly than expected, together indicating that shape informa-
tion related to the elongation of the structure is not particu-
larly useful in understanding age-related differences in
subcortical structure. Higher-frequency spatial information,
i.e. shape texture, also did not seem be very informative
either, despite artifactual reasons that it may have been useful
(e.g. head motion would lead to smoother estimates of seg-
mented structures, older adults are known to have increased
head motion; see Madan & Kensinger, 2016, for a more
detailed discussion).

When the four distinct shape measures were combined
with fractal dimensionality and volume (the gray bar), gains
were relatively small relative to fractal dimensionality alone.
However, this result is in-line with the primary goal of the
study—to better characterize the structural properties that
fractal dimensionality was sensitive to, using more interpret-
able measures of a structure’s shape. In this vein we were
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successful, the aggregate Shape model accounted for 80%–
90% of the variance in fractal dimensionality in all cases (i.e.
for each subcortical structure and sample; see Table 1). The
principle contributor in explaining age-related variability in
fractal dimensionality was the surface-to-volume ratio meas-
ures, convergent with this measure being the most sensitive
to age-related differences, of the four shape measures.

With regards to individual subcortical structures, we found
that fractal dimensionality continued to be indicative of age-
related differences in thalamus, even beyond the distinct
shape measures considered here. Age-related differences in
the two structures with the most elongation, the caudate and
hippocampus, were not particularly well explained by any of
the shape measures. At least, however, the shape measures
did provide a significant improvement over volume, which
was relatively unaffected by age. Smoothing spline fits for vol-
ume, fractal dimensionality, and surface-to-volume ratio are
shown in Figure 3. These spline fits show that many middle-
age adults have comparable volume and fractal

dimensionality—for the caudate and hippocampus—to
young adults, which is likely related to the poorer age-related
differences observed here.

Discussion and implications

Fractal dimensionality appears to be a structural measure
high in reliability (Madan & Kensinger, 2017b), sensitive to
age-related differences (Madan & Kensinger, 2016, 2017a), as
well as useful in differentiating individuals with a variety of
psychiatric and neurological disorders relative to healthy con-
trols (de Miras et al., in press; King, Brown, Hwang, Jeon, &
George, 2010; Nenadic, Yotter, Sauer, & Gaser, 2014; Sandu
et al., 2008; Thompson et al., 2005). However, this measure is
borne out of mathematical principles, rather than quantifying
a neurobiologically relevant biomarker directly. Here we com-
pared the sensitivity of fractal dimensionality to age-related
differences in healthy adults with four distinct shape-related
measures that are more biologically relevant than fractal

Figure 3. Smoothing spline age-structure fits for the OASIS sample. X-axis values represent z-scored volume (Vol), fractal dimensionality (FD), and surface-to-volume
ratio (SV). Each dot represents an individual.

AGING & MENTAL HEALTH 807



dimensionality: surface-to-volume ratio, sphericity, long-axis
curvature, and surface texture. Though our results demon-
strate that these other shape-related measures are able to
explain most of the same variance as fractal dimensionality,
we nonetheless suggest that fractal dimensionality is the
more useful single measure, as it simultaneously accounts for
these shape-related characteristics and also works as a gen-
eral purpose measure of structural complexity (see Madan &
Kensinger, 2016). Nonetheless, the current results indicate
that surface-to-volume ratio is also a particularly useful bio-
logical marker of age-related differences in subcortical struc-
tures and should be considered in future studies of age-
related structural differences. These results lay the foundation
for future ex vivo histological research to examine how aging
effects the microstructure of subcortical structures.

Here we demonstrate that shape-related measures can be
used as robust biological markers of aging using a computa-
tional neuroanatomy framework. While fractal dimensionality
performed well, the four distinct measures of shape-related
characteristics were also sensitive to age, particularly surface-
to-volume ratio. Furthermore, the current approach is in-line
with the emerging literature on ‘radiomics’ (Adduru, Michael,
Helguera, Baum, & Moore, in press; Gillies, Kinahan, & Hricak,
2016; Lambin et al., 2012, in press; Parekh & Jacobs, 2016; Yip
& Aerts, 2016), the use of high-throughput automatic quanti-
tative imaging analyses to calculate structural features related
to the shape of brain structures from radiological images, as
well as further demonstrates the benefits of open-access data
for brain morphology research (see Madan, 2017, for an in-
depth discussion). The current findings clarify the age-related
differences in the shape, not just volume, of subcortical struc-
tures in the brain and provide strong evidence for additional
biological markers of aging.
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