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Abstract

The most defining feature of the cortex is its folding struc-
ture. While these peaks and valleys can be coarsely char-
acterised using measures of cortical structure such as
gyrification and fractal dimensionality, these are not di-
rectly sensitive to the different scales of folding that com-
prise the brain’s cortical structure. Here we developed
an approach for characterising the angular power spec-
trum of cortical folding using spherical harmonics and
informed by prior research investigating the cosmic mi-
crowave background. In this work, we ultimately yielded
a single summary measure that is sensitive to minor folds
along the cortical gyri and sulci and is sensitive to age-
related differences in cortical structure.

Keywords: brain morphology; spherical harmonics; cortex;
MRI; topological spatial frequency; gyrification

Introduction

The most defining feature of the cortex is its folding struc-
ture. An on-going challenge is to develop useful measures
to characterise the folding pattern of the cortex and how in-
dividual brains may differ in their folding. Currently, the most
established approach is a measure of gyrification (Armstrong,
Schleicher, Omran, Curtis, & Zilles, 1995; Zilles, Armstrong,
Schleicher, & Kretschmann, 1988), which is based on the ra-
tio of cortical surface area relative to an estimated smooth
surface that encloses the cortex. Sulci can also be identified
and then quantified based on their width and depth (Madan,
2019a). Another approach is to treat the cortex as a com-
plex natural structure and quantify its complexity using fractal
geometry (Hofman, 1991; Kiselev, Hahn, & Auer, 2003). Re-
cent findings have demonstrated that these approaches can
be useful in characterising cortical structure and age-related
differences in cortical structure (Madan & Kensinger, 2016,
2018).

Here we propose an alternative measure, the angular
power spectrum of cortical folding. This approach relies on
spherical harmonics, where the cortical structure is recon-
structed using basis functions that vary in their topological
spatial frequency of folding. This approach complements re-
cent work to develop novel measures of brain morphology for
subcortical structures (Madan, 2019b), with the overarching
aim of improving our understanding of individual differences
in brain structure associated with healthy aging, neurological
disorders, cognitive abilities, and other inter-individual differ-
ences.

Methods

Calculation

As a Fourier approach can be used to approximate a com-
plex natural linear function using weighted combinations of
sinusoidal functions, spherical harmonics can be used to re-
construct complex structures through weighted summation of
spherical harmonic bases that vary in topological frequency
(degree, `) and polarity (order, m). Figure 1 illustrates the
spherical harmonics bases for positive orders.

Figure 1: Illustration of the spherical harmonic multipole com-
ponents (i.e., bases), for positive orders. Components with
negative orders appear analogous to the positive-order com-
ponents, but with different polarity orientations.

Multipole components Spherical harmonics are based on
an underlying spherical coordinate system, where θ ranges
from one pole to another (i.e., [0,π] or 180°, akin to latitude)
and ϕ wraps around the ‘equator’ (i.e., [0,2π] or 360°, akin
to longitude) following Euler angle conventions, as shown in
the inset of Figure 1. Degree ` denotes the degree of the
spherical harmonic multipole, with larger values correspond-
ing to higher topological spatial frequencies. ` = 0 has no
poles, `= 1 has a singular polarity gradient (akin to a magnet).
Higher degrees, corresponding to multiple poles, have more
complicated arrangements but in combination can be used to

496

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



Figure 2: Cortical reconstructions for a representative brain based on spherical harmonics. Each panel was set with a maximum
on the spherical harmonic degree (`max) available for approximating the cortical surface.

approximate complex three-dimensional structures, including
the folding pattern of a human cortical surface, as in Figure 2.

Each degree ` has orders m from −` to `, yielding 2`+ 1
components for each degree. When constructing a com-
plex structure using spherical harmonics, each combination
of degree–order, which are individually referred to as multi-
pole components or bases, is multiplied with a correspond-
ing set of weights (a`m), corresponding to the amplitudes for
each `,m component. Due to the spherical system, unlike
Fourier bases, spherical harmonic multipole components can
present as distinct types of patterns, referred to as zonal (e.g.,
`= 20, m= 0 in Figure 1), sectorial (e.g., `= 20, m= 20), and
tesseral (e.g., `= 20, m = 10). The pattern of each multipole
component, Y m

` (θ,ϕ), is defined as:

Y m
` (θ,ϕ) =


c`mP|m|` (cosθ)sin(|m|ϕ), −l ≤ m≤−1
c`m√

2
P|m|` (cosθ), m = 0

c`mP|m|` (cosθ)cos(|m|ϕ), 1≤ m≤ l
(1)

where P|m|` is the Legendre polynomial of degree
` and order m, and c`m is a normalisation factor,√

((2`+1)/2π)((`−|m|)!/(`+ |m|)!).

Spherical harmonic cortical reconstruction Cortical sur-
faces can be reconstructed using spherical harmonics, as
has been done in previous studies (e.g., Chung, Dalton,
Shen, Evans, & Davidson, 2007; Madan & Kensinger, 2017;
Williams, El-Baz, Nitzken, Switala, & Casanova, 2012). Here,
spherical harmonic multipole component amplitudes, a`m,
were fit to the FreeSurfer cortical meshes using a weighted
Fourier series approach, following the method described in
Chung et al. (2007) and code from Chung (2014). This ap-
proach relies on a heat kernel smoothing method with a de-
fined maximum spherical harmonic degree, `max = 50, and
bandwidth, σ = .001. Weighted spherical harmonics are
a generalised form of traditional spherical harmonics that
reduces ringing artifacts related to the Gibbs phenomenon

(Chung, 2014; Chung et al., 2007). Note, here we recon-
structed hemispheres individually, rather than whole brains as
others have done (e.g., Chung et al., 2007; Williams et al.,
2012), as this was considered to be more representative of ac-
tual cortical folding patterns (e.g., Madan & Kensinger, 2017).
As such, the angular power spectrum will be influenced by be-
ing calculated on either the combined bilateral cortical surface
or individual hemispheres and then averaged across the two.

To illustrate the incremental contributions of increasing de-
grees of spherical harmonic components, a representative
cortical surface was reconstructed with varying maximum
spherical harmonic degree, `max, shown in Figure 2.

Angular power spectrum The relationship between the
spherical harmonic degree ` and the angular scale of the cor-
tical folding (in degrees, λ) is defined by 180°/`. This corrob-
orates the visual pattern evident in Figure 2: High power at
` = 1 (or λ = 180°) corresponds to overall elongation of the
sphere in to a ellipsoid, while `= 2 (or λ = 90°) adds an addi-
tional folding component in the orthogonal axis. The addition
of further degrees of spherical harmonics yields a structure
similar to an inflated brain surface at ` = 4. Major gyri are
observable in the range of degrees ` = 10 through 15, cor-
responding to angular folding of approximately 12− 18°. Mi-
nor folds along the gyri are visible starting from approximately
`= 30 (or λ = 6°).

The power for each spherical harmonic degree `, C`, is de-
fined as the mean of the power across the 2`+ 1 multipole
components:

C` =
1

2`+1

`

∑
m=−`

|a`m|2 (2)

This equation is consistent with previous work on spherical
harmonics (e.g., Hinshaw et al., 2003). Note that the power
spectrum in studies of the cosmic microwave background is
often plotted re-scaled as `(`+1)C`/2π (Hinshaw et al., 2003;
Nolta et al., 2009; Souradeep, Saha, & Jain, 2006; Tegmark,
1997) or the square root of this value (Miller et al., 1999;
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Tegmark, 1997), however, this is intended to normalise for the
initial conditions and inflation of the universe (i.e., the Sachs-
Wolfe plateau, ` . 100) which is not relevant to the current
investigation. The power spectrum of cortical folding is shown
in the upper portion of Figure 3.
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Figure 3: Angular power spectrum of cortical folding.
Top: Angular power spectrum for degrees ` from 0 to 50
from the DLBS dataset. Power, C`, was plotted on a semilog
scale to better show the power of high frequency degrees;
log(C`) shown on the right y-axis. Angular scale is plotted
along the upper x-axis to aid in interpretation (see main text).
Each coloured line represents an individual participant’s corti-
cal folding power spectrum.
Middle: R2 values for the relationship between degree ` and
age for C` and log(C`), note the high degree of consistency.
Bottom: Pairwise correlations, r, between log(C`) values for
all combinations of degree `; brighter values indicate higher
correlations.

Summarising the power spectrum To make this power
spectrum measure more straightforward to use as a gross
measure of cortical structure for inter-individual difference
analyses, we sought to determine a single summary measure.
R2 values between the power, C`, and age were relatively con-
sistent for degrees ` of 15 and higher, as shown in Figure 3
(middle). However, as untransformed values, power C` de-
creases drastically in relation to degree `. To make variations
in angular power more comparable across degrees, power
values were log-transformed, see upper portion of Figure 3
(right y-axis). This transformation had a negligible effect on
the R2 values for individual degrees, but would make averag-
ing across degrees more consistent (rather than being more
heavily weighted on the larger power on the lower topologi-
cal spatial frequencies/higher angular scales. Taken together,
we developed γ as a summary measure of the angular power
spectrum of cortical folding:

γ (`min, `max) =
1

`max− `min +1

`max

∑
`=`min

log(C`) (3)

A number of other summary statistics were examined, e.g.,
fitting a decreasing power function to the power spectrum
values, but these were found to be less sensitive to inter-
individual differences in cortical structure.

Dataset

Data consisted of 315 healthy adults (198 females), aged 20–
89, from wave 1 of the Dallas Lifespan Brain Study (DLBS).
Participants were screened for neurological and psychiatric
issues. All participants scored 26 or above on the MMSE.
T1 volumes were acquired using a Philips Achieva 3 T with
a MPRAGE sequence. Scan parameters were: TR=8.1 ms;
TE=3.7 ms; flip angle=12°; voxel size=1×1×1 mm. See
Kennedy et al. (2015) for further details about the dataset.

Preprocessing of MRI data

The T1-weighted structural MRIs were processed using
FreeSurfer v6.0 (Fischl, 2012). Surface meshes were
estimated using the standard processing pipeline, i.e.,
recon-all, and no manual edits were made to the surfaces.
1 participant (female) was excluded from further analyses due
to a failure to reconstruct the cortical surface.

Results
The overall angular power spectrum of cortical folding is
shown in the upper portion of Figure 3. This approach to char-
acterising cortical structure has never been done before.

As the R2 values for individual degrees ` with age are rela-
tively consistent for both C` and log(C`) are highly consistent,
the log measure appears preferable. The mean correlation of
C` for degrees 15 through 50 is −.343; the same measure for
log(C`) is −.338. However, if the mean C` is calculated first
and then correlated with age, as opposed to averaging across
correlation statistics, is −.508; again, the comparable statistic
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for log(C`) is −.458. Despite this small decrease in correla-
tion strength, the log transformation increases the sensitivity
of the correlation to amplitudes of the higher degrees. Here we
consider this more uniform influence of degree ` to be prefer-
able as a summary statistic, even though power at higher de-
grees was slightly less related to age effects. Table 1 lists a
series of correlations conducted to aid in evaluating the re-
lationship between angular power spectrum and age, though
further development is needed. As visible in the lower portion
of Figure 3, there appear to be several distinct components to
the relationship between power at different degrees.

Correlation (r)
`min `max C` log(C`)

15 50 −.508 −.458
15 30 −.508 −.499
30 50 −.442 −.410
0 0 +.140 +.159
1 5 −.141 −.150
8 12 −.286 −.321

Table 1: Correlation values between mean angular power
spectrum and age, for degrees between `min and `max, both
with and without log transformation.

Conclusion
While many features of cortical structure are known to differ
in relation to inter-individual differences, here we developed a
novel measure based on the angular power spectrum of corti-
cal folding, γ. The primary aim is that additional measures of
structure will capture unique sources of variance and allow us
to better understand how inter-individual factors are reflected
in brain structure (see Madan & Kensinger, 2018, and Madan,
2019b, for related investigations). Further work will be neces-
sary to explore how this measure relates to other measures of
cortical structure–such as cortical thickness, gyrification, sul-
cal morphology, and fractal dimensionality.
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