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Gray matter volume for cortical, subcortical, and ventricles all vary with age. However,
these volumetric changes do not happen on their own, there are also age-related changes
in cortical folding and other measures of brain shape. Fractal dimensionality has emerged
as a more sensitive measure of brain structure, capturing both volumetric and shape-
related differences. For subcortical structures it is readily apparent that segmented struc-
tures do not differ in volume in isolation—adjacent regions must also vary in shape. Fractal
dimensionality here also appears to be more sensitive to these age-related differences than
volume. Given these differences in structure are quite prominent in structure, caution
should be used when examining comparisons across age in brain function measures, as
standard normalisation methods are not robust enough to adjust for these inter-
individual differences in cortical structure.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Brain structure and function change in many ways due
to aging. Conventional measures of brain structure are pri-
marily volumetric—regional cortical and subcortical vol-
ume, though cortical volume can be further decomposed
into thickness and surface area [25,20]. While these mea-
sures are useful, they have limitations in sensitivity to
structural changes that are complemented by the
approaches that measure shape-related properties.

When visually examining T1-weighted volumes that
vary in age, as in Fig. 1A, cortical thinning is not apparent.
Rather, there are clear differences in cortical folding, ven-
tricular enlargement, and subcortical shrinkage. Indeed,
these are the qualitative features assessed in ratings of
atrophy [3,22]. Quantification of gyrification based on
comparing surface area versus a smoothed outer contour
has been used in early work [29] and has been refined to
take advantage of modern three-dimensional reconstruc-
tion methods [26]. Gyrification has been shown to be sen-
sitive to age-related differences in cross-sectional samples
[6,15,18,1]. More recently, however, sulcal morphology—
width and depth—appear to be more direct measures of
longitudinal changes in cortical folding [13]. Sulcal mor-
phology has also previously been shown to be sensitive
to aging [8,9,11].

Fractal dimensionality is a scale-invariant mathemati-
cal measure of shape complexity. While not specific to
brain structure, it has been used in the neuroimaging liter-
ature for decades [4,27,7]. Most studies have focused on
differences in patients and the use of fractal dimensionality
to understand aging has only recently emerged [15,16,19].
Here it has been shown that for cortex, fractal dimension-
ality is more sensitive to age-related differences than cor-
tical thickness or gyrification [15,18]. Briefly, fractal
dimensionality involves counting the number of voxels
that include a structure at an initial spatial scale (e.g., 1-
mm isotropic) and then using coarser spatial scales and
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Fig. 1. (A) T1-weighted coronal sections of individuals that are 20 and 80 year old (left and right, respectively). (B) Illustration of the fractal dimensionality
calculation. This calculation involves counting the volume—in isotropic voxels—of a structure, here shown as coronal grey matter, across multiple spatial
scales. Here this was done at 1, 2, 4, 8, and 16 mm isotopic voxels, including any voxel that includes the structure (i.e., any voxel with partial volume is
counted). These counts and voxel sizes are then log–log transformed and the slope of the resulting line is the fractal dimensionality value of the structure.
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again counting the voxels that include the structure, as
shown in Fig. 1B. For simple structures such as a cube or
sphere, the shape is still apparent even if voxel resolution
becomes coarse. In contrast, for a complex structure such
as a human brain, lower resolution volumes lose details
of the shape; fractal dimensionality is a measure of this
loss in fidelity (see [15]. Fractal dimensionality does not
require high-field MRI and 1-mm isotropic voxels are often
sufficient, but higher-resolution data is necessary for smal-
ler structures (e.g., hippocampal subfields).

If shape was independent of volume and unrelated to
age, fractal dimensionality should provide no advantages
as it is a measure of shape complexity. However, if shape
and volume were linked, fractal dimensionality would be
more sensitive than volumetric measures. As an example
of this we can consider that age-related differences in sub-
cortical volume have been well established [24,28]. Should
we assume that the shape of a structure simply ‘scales’ in
space as it varies in volume, or that there would also be
2

associated changes in shape complexity? Morever, we
should further expect related variations on adjacent struc-
tures, these are segmented structures with other brain tis-
sues surrounding them. Indeed, age-related changes in
fractal dimensionality of subcortical structures are more
pronounced than those in volume—though this is not true
of the ventricles [16,12]. As an additional benefit, relying
on shape properties allows fractal dimensionality to be
more resilient to measurement error, such as head position
across multiple sessions [17] or within-session head
motion [10].

Recent advances provide strong evidence that aging is
not only reflected in volumetric differences. This approach
is ripe for further research, particularly in relating these
structural differences to behaviour, other modalities, and
other phenotypic measures more broadly. For instance,
the functional implications of inter-individual differences
in tertiary sulci [21] and cortical myelination [2] are poorly
understood. Given the richness of available open-access
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data, we now have the ability to conduct complex analyses
on tens of hours of task-related MRI data from a small sam-
ple of highly characterised participants, minimising struc-
tural variability as a source of variance [5,23,14].
Specifically, current normalisation methods for transform-
ing from native space to standardised space (e.g., MNI) are
not sufficiently considerate of inter-individual differences
in cortical folding. As a field we should carefully consider
when these approaches may be more informative than col-
lecting a small amount of functional data from hundreds of
individuals.
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