
NeuroImage 134 (2016) 617–629

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
Cortical complexity as a measure of age-related brain atrophy
Christopher R. Madan ⁎, Elizabeth A. Kensinger
Department of Psychology, Boston College, USA
⁎ Corresponding author at: Boston College, Departmen
140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.

E-mail address: madanc@bc.edu (C.R. Madan).

http://dx.doi.org/10.1016/j.neuroimage.2016.04.029
1053-8119/© 2016 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 13 December 2015
Revised 1 April 2016
Accepted 7 April 2016
Available online 19 April 2016
The structure of the human brain changes in a variety of ways aswe age.While a sizeable literature has examined
age-related differences in cortical thickness, and to a lesser degree, gyrification, here we examined differences in
cortical complexity, as indexed by fractal dimensionality in a sample of over 400 individuals across the adult
lifespan. While prior studies have shown differences in fractal dimensionality between patient populations and
age-matched, healthy controls, it is unclear how well this measure would relate to age-related cortical atrophy.
Initially computing a singlemeasure for the entire cortical ribbon, i.e., unparcellated graymatter, we found fractal
dimensionality to bemore sensitive to age-related differences than either cortical thickness or gyrification index.
We additionally observed regional differences in age-related atrophy between the three measures, suggesting
that they may index distinct differences in cortical structure. We also provide a freely available MATLAB toolbox
for calculating fractal dimensionality.
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1. Introduction

As we age, the structure of our brain changes in numerous ways,
ranging from vascularization to cellular (Kemper, 1994; Raz and
Rodrigue, 2006; Wiśniewski and Terry, 1973). Age-related brain atro-
phy can be readily measured in vivo usingmagnetic resonance imaging
(MRI). Many earlier studies have observed age-related differences in
gray matter volume (e.g., Coffey et al., 1992; Ge et al., 2002; Jernigan
et al., 1991; Passe et al., 1997; Raz et al., 1997; Resnick et al., 2000,
2003; Steiner et al., 1985). However, more recent studies have demon-
strated that, in cortical regions, inter-individual differences in gray
matter volume are more closely related to differences in cortical thick-
ness, rather than surface area (Barnes et al., 2010; Hutton et al., 2009;
McKay et al., 2014; Storsve et al., 2014;Winkler et al., 2010). Converging
with this, differences in cortical thickness have been shown to be relat-
ed to aging, while inter-individual differences in surface area have been
more strongly influenced by sex differences (Barnes et al., 2010; Fjell
et al., 2009a, 2009b; Herron et al., 2015; Hogstrom et al., 2013; Hutton
et al., 2009; McKay et al., 2014; Salat et al., 2004; Sowell et al., 2007;
Storsve et al., 2014; Thambisetty et al., 2010). These studies make
clear that different metrics of gray matter will have different sensitivi-
ties in detecting age-related differences. With the increased focus on
relatively short-term longitudinal studies (e.g., to assess the effects of
behavioral interventions, such as exercise and meditation, on brain
morphology; see Hayes et al., 2014; Tang et al., 2015), it is useful to
t of Psychology, McGuinn 300,
have additional metrics of cortical structure that are sensitive to age-
related differences.

Here we considered how age affects cortical structure by using both
cortical thickness and another metric, cortical complexity, measured
using calculations originally designed to quantify the structure of frac-
tals. Prior studies have demonstrated that cortical complexity is related
to cognitive performance (Im et al., 2006; Mustafa et al., 2012; Sandu
et al., 2014) and differs between several neurological patient popula-
tions relative to healthy controls (e.g., Alzheimer's disease: King et al.,
2009, 2010; schizophrenia: Sandu et al., 2008; Nenadic et al., 2014;
Yotter et al., 2011; multiple sclerosis: Esteban et al., 2009; frontal lobe
epilepsy: Cook et al., 1995; multiple system atrophy: Wu et al., 2010;
William's syndrome: Thompson et al., 2005). Here we investigated
age-related differences in fractal dimensionality of the cortical ribbon
and parcellated regions of cortex in a large sample of adults across the
lifespan, using structural images obtained from an open-access dataset.
To conduct these analyses,we developed aMATLAB toolbox designed to
use intermediate files produced in a standard FreeSurfer analysis, which
we now freely distribute (http://cmadan.github.io/calcFD/).

Complex natural structures can be difficult to quantify. While
fractal dimensionality analyses were initially developed for use
with fractals, they were found to be useful in quantifying the com-
plexity of ‘natural’ structures, such as the complexity of continental
coastlines (Mandelbrot, 1967). Fractal dimensionality analyses have
been shown to be useful in quantifying the natural complexity of the
brain across multiple scales, ranging from molecular to whole brain
(see Di Ieva et al., 2014, 2015, for comprehensive discussions). In
these MRI studies, researchers specifically sought to use fractal dimen-
sionality analyses to quantify the convolutional properties of the cortex
(Cook et al., 1995; Free et al., 1996; Kiselev et al., 2003; Luders et al.,
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1 These surface reconstruction errors are likely related to the images having insufficient
signal intensity to differentiate gray matter from surrounding tissue and CSF, a problem
that has been shown to be related to age (Salat et al., 2009). FDestimateswould likelyhave
been under-estimated for these individuals, and would have potentially led to over-
estimation of age-related differences in FD.
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2004; Thompson et al., 1996). Recent studies have used fractal dimen-
sionality to assess age-related differences in white matter morphology
(Farahibozorg et al., 2015; Zhang et al., 2007). Im et al. (2006) found
that whole-brain mean cortical thickness and fractal dimensionality
shared approximately 50% of the variance (i.e., r2; also see King et al.,
2010), suggesting that fractal dimensionality may relate to age-related
brain atrophy, but also may be sensitive to other differences in gray
matter structure that are not indexed by cortical thickness.

Prior research has demonstrated that in addition to cortical thick-
ness, fractal dimensionality co-varies with gyrification (King et al.,
2009, 2010). As such, we additionally examined age-related differences
in gyrification index as a comparison. Briefly, the gyrification index
measures the amount of cortical folding in a region of the brain.
Gyrification index is calculated by estimating a smooth surface contour
that wraps around the pial surface, where the gyrification index is the
ratio of a regional surface area for the pial surface to this smoothed
outer surface (i.e., a convex hull; for an illustration, see Fig. 3 of
Mietchen and Gaser, 2009, or Fig. 2 of Toro et al., 2008; also see
Kochunov et al., 2012). Though age-related differences in gyrification
have not been studied as extensively as those in relation to cortical
thickness, Hogstrom et al. (2013) found clear evidence for age-related
reductions in gyrification (also see Rogers et al., 2010), and that these
differences were not correlated with decreases in cortical thickness,
which they also observed. Thus, one of our aims was also to examine
the relationship between fractal dimensionality, cortical thickness, and
gyrification index, within a large sample of healthy adults across the
lifespan.

Here we examined age-related differences in whole-brain and lobe-
wise estimates of cortical complexity, as indexed by fractal dimension-
ality, in a sample of over 400 individuals across the adult lifespan.
These results were compared with similar analyses testing for age-
related differences in cortical thickness and gyrification index, as well
as the relationship between these more established measures and frac-
tal dimensionality. Finally, we used a multivariate regression approach
to directly compare these different measures of cortical morphology,
and used regression models that included predictors from each of the
three measures. We found fractal dimensionality to be more sensitive
to age-related differences than either thickness or gyrification; we
also observed regional differences in age-related atrophy depending
on which cortical measure was used, suggesting that each measure
may index distinct differences in cortical structure. We also provide a
freely available MATLAB toolbox for calculating fractal dimensionality,
using intermediate files generated as part of the standard FreeSurfer
analysis pipeline, and present benchmark analysis demonstrating its
functionality.

2. Procedure

2.1. Dataset

All MRI data was drawn from the IXI (“Information eXtraction from
Images”) dataset, a collection of structuralMRIs from581 healthy adults
across the lifespan (20–86 years old). The IXI dataset was collected in
2005–2006 from three sites in the UK (each with a different scanner
system) and includes T1, T2, DTI, PD, and MRA images. Here we only
used the T1-weighted structural images. The dataset is freely available
from: http://brain-development.org/ixi-dataset/. The IXI dataset has
been used in numerous studies investigating structural properties of
the brain and related differences due to healthy aging (e.g., Ardekani
and Bachman, 2009; Franke et al., 2010; Ganzetti et al., 2014;
Koutsouleris et al., 2014; Robinson et al., 2010; Ziegler et al., 2012). Un-
fortunately, the criteria used to assess that these individuals were
healthy adults without any neurological or psychiatric disorders is not
provided.

Of these 581 adults for which there was imaging data in the IXI
dataset, the analyses reported here are based on a sample of 427
individuals. Individuals were excluded based on three criteria: age not
available (N=18), if the gyrification index analyses failed to determine
a suitable convex-hull surface for at least one hemisphere (N=6), or if
the surface reconstruction failed visual inspection1 (an additional N =
130). The full list of IDs for the individuals included in the analyses is
listed in the Appendix A. Examples of surfaces that failed the visual in-
spection are shown in Fig. A3.

Demographics (for the individuals that were included in the analy-
ses) and scan parameters for the data from each of the sites are as fol-
lows. From the Guy's Hospital sample (Philips 1.5T), data was used
from 251 individuals (147 female), with ages ranging from 20 to 86.
Scan parameters for the T1 volumes were: TR: 9.8 ms; TE: 4.6 ms;
phase encoding steps: 192; echo train length: 0; reconstruction diame-
ter: 240 mm; flip angle: 8°. From the Hammersmith Hospital sample
(Philips 3T), data was used from 129 individuals (81 female), with
ages from 20 to 81. Scan parameters for the T1 volumes were: TR:
9.6 ms; TE: 4.6 ms; phase encoding steps: 208; echo train length: 208;
reconstruction diameter: 240 mm; flip angle: 8°. From the Institute of
Psychiatry sample (General Electric 1.5T), data was used from 47 indi-
viduals (32 female), with ages from 21 to 78. Scan parameters for the
volumes collected at this site are not available.

2.2. Preprocessing of the structural data

Prior to the fractal dimensionality analyses, the structural MRIs for
all 581 scan volumeswas processed using FreeSurfer 5.3.0 on amachine
running CentOS 6.6 (Fischl, 2012; Fischl and Dale, 2000; Fischl et al.,
2002). FreeSurfer's standard pipeline was used (i.e., recon-all) and
no manual edits were made to the surface models As is typically done,
gray matter was defined by segmenting the anatomical volume to de-
termine the white matter surface (white-gray interface) and the pial
surface (gray-cerebrospinal fluid [CSF] interface).

Gyrification index was calculated using FreeSurfer, as described in
Schaer et al. (2012). Briefly, gyrification index is calculated by estimat-
ing a smooth surface contour that wraps around the pial surface,
where the gyrification index is the ratio of a regional surface area for
the pial surface to this smoothed outer surface (i.e., a convex hull).

2.3. Calculating fractal dimensionality

In fractal geometry, several approaches have been proposed to
quantify the ‘dimensionality’ or complexity of a fractal. The approach
here calculates the Minkowski–Bouligand dimension, which in most
cases is also equivalent to the Hausdorff dimension (see Mandelbrot,
1967). Several algorithms have been proposed for calculating this
dimensionality measure (see Fernández and Jelinek, 2001), two of
which have been implemented in the toolbox we developed
for these analyses: the box-counting algorithm and the dilation
algorithm.

The box-counting algorithm (Caserta et al., 1995;Mandelbrot, 1982)
involves considering the 3D structure within a fixed grid, and counting
howmanygrid ‘boxes’ (i.e., voxels) contain portions of the surface of the
structure (Fig. A2). The size of the grid is then increased, and the num-
ber of filled boxes is counted again. By using multiple box sizes and
obtaining their respective counts, a relationship can be determined,
which is related to the complexity of the structure. These two values
will follow a power-law relationship, and the exponent will relate to
the structure's complexity, as illustrated in Figs. 1 and 2B. Re-plotting
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Fig. 1. Illustration of how fractal dimensionality is measured from a 2D structure.
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the box size and related counts in log–log space and taking the additive
inverse of the slope produces the fractal dimensionality of the structure.
Thus, the corresponding equation is:

FDf ¼ −Δlog2 Countð Þ
Δlog2 Sizeð Þ :

Note, the box-countingmethod is similar to the line-segmentmeth-
od originally proposed to describe the complexity of intricate two-
dimensional shapes (coastlines) (see Mandelbrot, 1967).

In Fig. 1 we illustrate the procedure for calculating the fractal dimen-
sionality of a complex 2D structure, here the coastline of Germany.
Using the box-counting method, we determined the number of boxes
that would fit the edge (‘surface’) of the structure using various sizes
of boxes. Plotting the relationship between the number of counted
boxes and the size of the boxes follows a power-law relationship, but
re-plotting the values in log–log space yields a straight line. The slope
of this line is the fractal dimensionality of the structure. Fig. 1 shows
that this procedure can be used for either the edge/‘surface’ of the com-
plex structure, which we refer to as FDs, or can be calculated including
the ‘filled’ space within the structure, which we refer to as FDf.

Most prior studies of cortical complexity have used the box-counting
algorithm (e.g., Im et al., 2006; King et al., 2009, 2010; Thompson et al.,
1996). Here we also implemented the dilation algorithm, where each
box/voxel is replaced with a cube of a given box size (i.e., ‘dilated’).
This was implemented using a 3D-convolution operation (convn in
MATLAB). Although prior studies have implemented dilation using
spheres (e.g., Fernández and Jelinek, 2001; Free et al., 1996), we used
a cube here as this makes the dilation algorithm a more precise version
of the box-counting algorithm. Specifically, whereas the box-counting
algorithm usually uses a fixed grid scan to count if the boxes are filled
or not, using the dilation algorithmwith a cube is functionally identical
to computing the box-counting algorithm using a sliding grid scan
(i.e., if the grid was shifted in alignment with the structure, and the
average of all shifted counts was taken, see Fig. 2A). While a sliding
grid space has been used previously (e.g., Goñi et al., 2013), the 3D-
convolution operation but can be calculated much faster as it is less
computationally demanding.

Here we used box sizes (in mm) corresponding to powers of 2
(e.g., de Souza and Pires Rostirolla, 2011; Fernández and Jelinek, 2001;
Hou et al., 1990), ranging from 0 to 4 (i.e., 2k [k = 0, 1, 2, 3, 4] =1, 2,
4, 8, 16 mm). For illustrative purposes, Figs. 2 and A2 show the steps
for each of the algorithms for the first participant in the IXI dataset,
where the filled volume is counted (FDf), rather than just the surface
(described further below). Fig. 2A shows axial slices from the middle
of the brain (i.e., the middle slice in native space), corresponding to
the dilation algorithm at the box sizes we considered here. The 3D vol-
umes corresponding to each level box size are also shown in Fig. 2A. As
described earlier, FD is calculated based on the number of boxes
(voxels) that are filled at each box size. As shown in the left panel of
Fig. 2B, as box size increases, this value decreases as volume of each
box can contain more of the structure. After taking the log of both
the box size and counting the boxes filled, we obtain the fractal
dimensionality.

To ensure that our obtained fractal dimensionality valueswere valid,
we computed the dimensionality of a set of benchmark volumes,
i.e., simulated phantoms. The details of these benchmark analyses are
reported in the Appendix A. In these analyses we also found that the di-
lation algorithm yielded slightly more robust fractal dimensionality
values; thus, all of the fractal dimensionality results reported here
were calculated using the dilation algorithm.

2.4. Relationship with intracranial volume

Mathematically, fractal dimensionality (FD) is scale-invariant and
should not be related to intracranial volume (ICV); it is possible, howev-
er, that biological constraints may cause FD and ICV to be correlated,
e.g., smaller ICV space results in a relative increase in cortical



Fig. 2. Illustration of how fractal dimensionality is measured from a 3D structure. Panel A shows the filled boxes that are counted at each box size (corresponding to FDf), shown as axial
slices from themiddle of the brain and as 3D surface volumes, for the dilation algorithm. Panel B plots the number of counted, filled boxes at each box size (left), and re-plotted in log–log
space. The fractal dimensionality is the slope of the line in log–log space. All brain images are shown from IXI002, 35 year-old female, from the IXI dataset. 3D surfaces are rendered using
the pipeline described in Madan (2015).
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complexity. Here we sought to determine if FD is correlated with ICV,
such that we can appropriately control for this relationship, if it exists.
We estimated ICV using FreeSurfer (Buckner et al., 2004), which has
been shown to correspond well with manual tracing (Sargolzaei
et al., 2015). ICV was only weakly related to age differences
[r(416) = −.190, p b .001], though was found to be correlated with
sex [r(416) = −.572, p b .001].

Analyses indicated that ICV correlated only weakly with either mea-
sure of fractal dimensionality of the cortical ribbon [ICV ↔ FDs:
r(425) = .213, p b .001; ICV ↔ FDf: r(425) = .178, p b .001]. These re-
lationships were not affected by additionally controlling for effects of
sex and site [ICV ↔ FDs: rp(420) = .194, p b .001; ICV ↔ FDf:
rp(420) = .167, p b .001]. As such, it does not appear that ICV and FD
are meaningfully related.

2.5. Data Analysis

Previous studies have observed sex differences in cortical thick-
ness (e.g., Herron et al., 2015; Sowell et al., 2007) and fractal dimen-
sionality (Luders et al., 2004), but not gyrification (Hogstrom et al.,
2013). Additionally, it is likely that scanning the same individual at
a different scanner site would yield differences in estimates of
brain morphology (e.g., see Dickerson et al., 2008; Han et al., 2006;
Iscan et al., 2015; Jovicich et al., 2013). As such, all of the correlations
reported were conducted as partial correlations, controlling for effects
of sex and site.
3. Results

3.1. Cortical ribbon

We first examined correlations between the individuals' age and the
complexity of the cortical ribbon, i.e., unparcellated gray matter. In
FreeSurfer, the cortical ribbon is output as an intermediate file during
the analyses (ribbon.mgz).

3.1.1. Cortical complexity
As shown in Fig. 3A, cortical complexity, as quantified as the fractal

dimensionality of the filled volume (FDf) robustly decreased as a func-
tion of age [age ↔ FDf: rp(425) = −.732, p b .001]. Convergent with
prior findings (King et al., 2010), the relationship was weaker when
we instead used the fractal dimensionality of the surface (FDs)
[age↔ FDs: rp(425)=−.719, p b .001]. Nonetheless, the two fractal di-
mensionality measures were highly correlated [FDf ↔ FDs: rp(425) =
.982, p b .001]. Fig. 4 shows the cortical surface for individuals with
the high and low FDf values. By comparing these sets of cortical surfaces,
it is qualitatively observable that these differ in cortical complexity. The
surfaces for these individuals are viewable in anonline interactive view-
er at: http://brain3d.cmadan.com/IXI-FD/.

3.1.2. Other cortical measures
For comparison, we calculated the relationship between whole-

brain mean cortical thickness and gyrification index. Cortical thickness

http://brain3d.cmadan.com/IXI-FD/


Fig. 3. Fractal dimensionality (FDf) for the individuals in the IXI dataset. Panel A shows the
scatter plot of age and FDf for the cortical ribbon, along with the correlation and slope.
Scatter plots of age and FDf for each lobe, are shown in panel B, along with the
respective correlations and slopes.

Fig. 5. Mean cortical thickness for the individuals in the IXI dataset. Panel A shows the
scatter plot of age and whole-brain mean cortical thickness, along with the correlation
and slope. Scatter plots of age and mean cortical thickness for each lobe, are shown in
panel B, along with the respective correlations and slopes.
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estimates were calculated as the average of the distance from thewhite
matter surface to the closest possible point on the pial surface, as calcu-
lated using the standard FreeSurfer pipeline. Using the output from
FreeSurfer for each hemisphere, we averaged the mean cortical thick-
ness for each hemisphere as a weighted average, accounting for hemi-
spheric differences in surface area, yielding an estimate of whole-brain
mean cortical thickness; a similar procedure was used to estimate
whole-brain gyrification index.

As expected, both whole-brain mean cortical thickness and
gyrification index decreased with age [age ↔ CT: rp(425) = −.603,
p b .001; age↔ GI: rp(425) =−.494, p b .001] (Figs. 5A and 6A), how-
ever, both of these relationships were qualitatively weaker than that
foundwith fractal dimensionality of the filled volume. Nonetheless, cor-
tical thickness and gyrification indexwere only weakly with each other,
suggesting that the two cortical measures quantified unique sources of
inter-individual variability [CT↔ GI: rp(425) = .228, p b .001].

Next, we quantitatively evaluated how the two extant measures
related to fractal dimensionality. While mean cortical thickness was
strongly correlated with both measures of fractal dimensionality, it
was more strongly correlated with the fractal dimensionality of the
filled volume than of the surface [CT ↔ FDf: rp(425) = .865, p b .001;
CT↔ FDs: rp(425) = .783, p b .001]. Conceptually, the main difference
Fig. 4. Cortical surfaces for individuals with high and low FDf values, alongwith their demograph
at: http://brain3d.cmadan.com/IXI-FD/.
between the twomeasures of fractal dimensionality is that FDfmore di-
rectly incorporates the volume of the gray matter, suggesting that FDf

captures more of the inter-individual variability in cortical volume and
thickness than FDs. To test this relationship further, we tested if FDf cap-
tured age-related variability above that explained by mean cortical
thickness, and vice versa. Using partial correlations, we found that FDf

significantly decreasedwith age, even after accounting formean cortical
thickness [rp(424) = −.525, p b .001]. Mean cortical thickness did not
decrease with age, above what could be explained by FDf [rp(424) =
.087, p= .075]. However, despite both partial correlations being signif-
icant, these results suggest that FDf is a more sensitive quantitative
measure of age-related brain atrophy than whole-brain mean cortical
thickness.

Gyrification index was strongly correlated with both measures of
fractal dimensionality [GI ↔ FDf: rp(425) = .626, p b .001; GI ↔ FDs:
rp(425) = .702, p b .001]. Using partial correlations, we found that
FDf was still strongly correlated with age, even after accounting for the
gyrification index [rp(424) = −.623, p b .001]. In contrast, gyrification
index was not correlated with age, above what could be explained by
FDf [rp(424) =−.066, p= .17]. Thus, whole-brain fractal dimensional-
ity appears to better quantify age-related cortical atrophy than either
whole-brain cortical thickness or gyrification index.
ic information. Surfaces for these individuals also viewable in an online interactive viewer
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Fig. 6. Gyrification index for the individuals in the IXI dataset. Panel A shows the scatter
plot of age and whole-brain gyrification index, along with the correlation and slope.
Scatter plots of age and mean gyrification index for each lobe, are shown in panel B,
along with the respective correlations and slopes.
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Comparing our resultswith those in the extant literature, in a sample
of 70 individuals (35 Alzheimer's patients and 35 age-matched healthy
controls), King et al. (2010) found the correlations between fractal di-
mensionality of the cortical ribbon (i.e., filled volume) and cortical
thickness and gyrification index to be r= .832 and r= .555, respective-
ly. In a sample of over 400 healthy adults across the lifespan, here we
found these same correlations for cortical thickness and gyrification
index to be rp = .863 and rp = .626, respectively. Thus, our calculations
relating fractal dimensionality to other cortical measures appear to be
in-line with prior findings, but also demonstrate that fractal dimension-
ality is more sensitive to age-related differences in brain morphology
than either cortical thickness or gyrification index. The relatively weak
correlation between thickness and gyrification also corresponds well
to King et al.’s results, r = .184, whereas we found this relationship to
be rp = .228.

3.2. Regional complexity

It is well known that age-related cortical atrophy, as measured by
cortical thickness, does not occur homogenously across the cortical sur-
face. Recent cross-sectional and longitudinal studies that investigated
age-related differences in cortical thickness have found that the two
lobes most affected are the frontal and temporal lobes, while the occip-
ital lobe is the least affected (e.g., Fjell et al., 2009a, 2009b; Hogstrom
et al., 2013; Hutton et al., 2009; Salat et al., 2004; Sowell et al., 2003).2

Yet, the regional heterogeneity in age-related differences may vary de-
pending on the metric used. For instance, Hogstrom et al. (2013)
found that while frontal and temporal lobes were most correlated
with age when cortical thickness was measured, the parietal lobe was
most correlated with age when gyrification index was used. Here, we
compared the effect of age on cortical complexity, cortical thickness,
and gyrification index for each lobe.
2 However, some longitudinal studies suggest that the frontal and parietal lobes are the
most affected by aging (e.g., Crivello et al., 2014; Resneck et al., 2003; Thambisetty et al.,
2010).
3.2.1. Cortical complexity
We calculated the fractal dimensionality of parcellations of gray

matter corresponding to each lobe. This was done by using the
Destrieux et al. (2010) parcellation protocol, built into the standard
FreeSurfer pipeline (aparc.a2009s+aseg.mgz), where each of the
148 parcellated regions were dummy-coded by lobe. The provided
MATLAB toolbox is designed to group together parcellated regions
assigned the same dummy-coded label into a binarized volume prior
to calculating the fractal dimensionality. As FDf estimates for each lobe
were highly correlated across hemispheres [frontal: r(425) = .971,
p b .001; parietal: r(425) = .913, p b .001; temporal: r(425) = .903,
p b .001; occipital: r(425)= .877, p b .001], herewe used bilateral struc-
tures for each lobe in subsequent analyses. As shown in Fig. 3B, we
found age-related decreases in fractal dimensionality to be highest in
the frontal lobe [rp(420) = −.740, p b .001], followed by the parietal
lobe [rp(420) = −.671, p b .001], while the temporal lobe was the
least associated with age-related differences [rp(420) = −.555,
p b .001].

3.2.2. Other cortical measures
It was surprising thatwe found the temporal lobe to be least affected

by age-related differences, as measured using fractal dimensionality
analyses. However, this discrepancy could be due to the use of a differ-
entmeasure of age atrophy, rather than cortical thickness, or it could be
because the individuals in the IXI dataset exhibited less temporal atro-
phy than is usually found. To distinguish between these two possibili-
ties, we also calculated the mean cortical thickness for each lobe, and
similarly correlated each of these sets of values with the individuals'
age. As shown in Fig. 5B, differences in cortical thicknessweremost pro-
nounced in the frontal lobe [rp(420)=−.634, p b .001], followed by the
temporal lobe [rp(420) = −.574, p b .001].

As shown in Fig. 6B, we additionally calculated the gyrification index
for each lobe and found age-related differences to be greatest in the pa-
rietal lobe [rp(420)=−.535, p b .001], and relatively comparable in the
frontal and temporal lobes [frontal: rp(420) =−.443, p b .001; tempo-
ral: rp(420) = −.432, p b .001]. Thus, lobe gyrification correlated more
weakly with age than cortical thickness, and wasmost pronounced in a
different lobe. These results are consistent with prior findings.
Hogstrom et al. (2013) similarly found weaker correlations with
gyrification index than cortical thickness and found a similar pattern
in terms of regional specificity. To provide further insight into these
three measures, Fig. 7 shows an example cortical surface along with
the cortical morphology measures associated with each lobe.

3.2.3. Regional heterogeneity
Given these different patterns of correlations between lobe-wise

estimates of each cortical morphology measure and age, we sought to
examine differences in how these lobe-wise estimates may correlate.
For instance, if inter-individual differences in fractal dimensionality
were more homogenous, i.e., more collinear, across the cortex relative
to regional variability in cortical thickness. To assess this, we computed
the pairwise correlations between all of the lobes using each of our
three measures. Fig. 8 reports these lobe-wise correlation matrices
(i.e., corrgram; Friendly, 2002).
Fig. 7. Cortical surface for participant IXI002 from the IXI dataset, colored by lobe
parcellation, along with cortical surface measures.



Fig. 8. Lobe-wise homogeneity in cortical structure, as measured using cortical thickness, gyrification index, and fractal dimensionality (FDf). Triangular grids show pair-wise correlations
across lobes. Below each grid is the variance explained by the first principal component for each cortical measure.
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As shown in Fig. 8, the pairwise correlations between lobeswere rel-
atively consistent, between the three measures, with all three showing
slightly lower correlations for the frontal lobe. Averaging across regions
(via Fisher's Z-transform; see Corey et al., 1998) yielded comparable
average correlations for both measures [cortical thickness: rp(420,
N = 6) = .814, p b .001; gyrification index: rp(420, N = 6) = .798,
p b .001; fractal dimensionality: rp(420, N = 6) = .824, p b .001]. As a
secondary approach, we also tested if a multivariate approach would
bemore sensitive to thesepotential differences in regional homogeneity
by conducted principal component analyses (PCA) for each set of values
(e.g., lobe-wise estimates of cortical thickness). The first principal com-
ponent in each case explained between 83% and 86% of the variance (see
Fig. 8). Thus, it does not appear that any of the measures exhibits more
or less regional specificity/collinearity than the others, based on lobe-
wise parcellated regions.

3.3. Multivariate relationship with age

These differences between regional cortical thickness, gyrification,
and complexity suggest that fractal dimensionality analyses may quan-
tify a different aspect of age-related differences in brain structure, rather
than being merely a co-varying metric. To test this, we conducted a set
of regressionmodels, all with the dependant variable of age (controlling
for effects of sex and site), using different sets of predictors related to
cortical thickness, gyrification index, and fractal dimensionality (FDf).
Here we report the amount of variability in age explained by each set
of predictors (i.e., R2). Furthermore, we formally compare the fitness
Table 1
Multivariate regression models measuring the relationship between cortical thickness, gyrifica
greater than 2 suggest that the model with the lower value is a significantly better fit. See mai

Model Model parameters

Relationship Regions Measure

1 Linear Whole-brain Cortical thickne
2 (Cortical ribbon) Gyrification ind
3 Fractal dimens
4 [All 3]
5 Linear Lobe-wise Cortical thickne
6 Parcellations Gyrification ind
7 Fractal dimens
8 [All 3]
9 Linear & quadratic Whole-brain Cortical thickne
10 (Cortical ribbon) Gyrification ind
11 Fractal dimens
12 [All 3]
13 Linear & quadratic Lobe-wise Cortical thickne
14 Parcellations Gyrification Ind
15 Fractal dimens
16 [All 3]
of the models using the Bayesian Information Criterion (BIC), which
evaluates model fitness while penalizing models for having more pa-
rameters. As a rule of thumb, if the difference between BIC for two
model fits is less than two, neither of themodels' fit to the data is signif-
icantly better (Burnham and Anderson, 2002, 2004). As absolute BIC
values themselves are arbitrary, we subtract the BIC value for the best
model considered from all BIC values and report ΔBIC for each of the
models, as is common practice. As a result, the best model considered
is ΔBIC = 0.00 by definition. All of the models are listed in Table 1.

In the first three models, we input whole-brain cortical thickness,
gyrification index, or fractal dimensionality as the predictors, respec-
tively. These three models directly correspond to the correlations
shown in Figs. 3A, 5A, and 6A. In the fourth model, we used all
three—whole-brain estimates of cortical thickness, gyrification index,
and fractal dimensionality—as predictors to further test if there is inde-
pendent variance explained by eachmetric, even after penalizing for the
additional degree of freedom in the model. We found that whole-brain
fractal dimensionality explained more variance (i.e., R2) than the other
two single predictor models [FDf: 51.7%; CT: 33.5%; GI: 20.6%]. Combin-
ing the threemeasures of cortical structure led to a slight increase in the
amount of variability explained [51.7%]; however this increase did not
produce a significantly better fit relative to its use of an additional pa-
rameter (i.e., ΔBIC between the lowest two models was greater than
two).

In the next set of models, we first used lobe-wise measures of corti-
cal thickness, gyrification index, or fractal dimensionality, respectively
(models 5–7). In the eighth model, we considered lobe-wise predictors
tion index, and fractal dimensionality with age. Models with ΔBIC values with a difference
n text for further details.

Model fitness

N. predictors Var. explained (R2) ΔBIC

ss 1 33.55% 135.91
ex 1 20.61% 211.88
ionality (FDf) 1 51.66% 0.00

3 51.72% 11.63
ss 4 38.99% 117.64
ex 4 26.35% 198.02
ionality (FDf) 4 53.22% 4.20

12 56.54% 21.23
ss 2 33.59% 141.71
ex 2 20.62% 217.90
ionality (FDf) 2 52.13% 1.90

6 52.39% 23.86
ss 8 38.66% 119.91
ex 8 26.14% 199.23
ionality (FDf) 8 53.28% 3.69

24 59.53% 63.47
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for all three measures, yielding a total of twelve predictors. Again we
found that the fractal dimensionality explained more of the variance
in age than the other twomeasures, though therewas still an additional
benefit of combining all three measures. The lobe-wise regional esti-
mates of fractal dimensionality also provided a small but significant im-
provement in predictive value relative to the whole-brain estimate
(i.e., comparing models 7 and 3).

Many studies have found that age-related differences in cortical
thickness are not linearly related to age; often a quadratic term is addi-
tionally included in the regression model (e.g., Crivello et al., 2014;
Hogstrom et al., 2013; McKay et al., 2014; Sowell et al., 2003;
Thambisetty et al., 2010; Walhovd et al., 2011), however, interpreting
the beta coefficients must be done with caution (see Fjell et al., 2010).
Hogstrom et al. (2013) also found significant quadratic relationships be-
tween age and gyrification index, suggesting that including these non-
linear effects would be beneficial to include in our regression models
here. To this end, we re-ran the above eight models, incorporating
both linear and quadratic terms for each of the included predictors.

In nearly all of the eight cases, themodels that included the quadrat-
ic component only slightly outperformed the equivalent models that
only contained a linear component; this benefit was not sufficient to
compensate for the additional parameters used (i.e., BIC). Across the
16 models, the linear-only whole-brain fractal-dimensionality model
(model 3) explained the most variability in age, relative to the number
of parameters it used. Specifically, it was able to explain 51.7% of the
variancewith only one parameter. The highest amount of variability ex-
plained, of all of the models considered, was 59.5%.

Fig. 9 summarizes our findings of age-related differences across the
three structural measures, for the entire cortical ribbon and individual
lobe-wise parcellations.

3.4. Considering the influence of age-related artifacts in MRI acquisition

Recent research has demonstrated that head motion during MRI ac-
quisition can lead to lower estimates of cortical thickness (Reuter et al.,
2015). This is of particular relevancewhen investigating the association
between brain structure and aging, as older adults tend to move their
heads during MRI scanning more than young adults (Andrews-Hanna
et al., 2007; Salat, 2014; Van Dijk et al., 2012). Thus, MRI measurements
of cortical thickness would be influenced by both objectively thinner
cortex and age-related differences in head motion during MRI acquisi-
tion. Since the cortical complexity calculations presented here are
based on the cortical ribbon (or subregions of it), it is likely plausible
that FDf would also be affected by head motion. As a coarse approach
to evaluate whether the age-related differences in cortical complexity
would remain even without age differences in motion, we additionally
computed fractal dimensionality from post-mortem structural MRIs
Fig. 9. Relationship between each cortical structure measure (cortical thickness,
gyrification index, and fractal dimensionality [FDf]) with age, for the entire cortical
ribbon and individual lobe-wise parcellations. Each bar represents the R2 for a quadratic
regression model with age.
(thus void of motion) from individuals who donated their brain to sci-
ence, obtained from the Allen Human Brain Atlas. Currently there are
MRIs available from eight donors (who did not have any psychological
or neurological disorders), however FreeSurfer was unable to estimate
the surface for one of the donors (H0351.1009). The seven donors used
in these analyses, and their demographic details, are: H0351.1012
(31 M), H0351.1015 (49 F), H0351.1016 (55 M), H0351.2001 (24 M),
H0351.2002 (39M), H0351.2003 (48 F), H372.0006 (44M). The structur-
al MRIs are freely available from: http://human.brain-map.org/mri_
viewers/data (see Allen Institute for Brain Science, 2013, for the MRI ac-
quisition parameters).

As before, we calculated six measures: fractal dimensionality (FDf),
mean cortical thickness, and gyrification index across the entire cortical
ribbon, and mean cortical thickness and FDf for each lobe.

Even in this small sample, we did observe age-related decreases in
FDf (Fig. 10A-B). Here we also found the rank-order of FDf values across
lobes to be consistent with our findings in the IXI dataset (i.e., Fig. 3B):
frontal, temporal, parietal, occipital.

As shown in Fig. 10C-D, age-related differences in mean cortical
thickness did not appear to decrease with age. As this is cross-
sectional data from a small sample, this is not necessarily concerning.
The rank-order of cortical thickness across the lobes did match with
our findings in the IXI dataset (i.e., Fig. 5B): temporal, frontal, parietal,
occipital. Fig. 10E-F show that we still did observe age-related declines
in gyrification, and that the rank-order across the lobes was again
Fig. 10. Mean cortical thickness, gyrification index, and fractal dimensionality (FDf) for
the individuals in the Allen Human Brain Atlas dataset. Fractal dimensionality for the
whole-brain and each lobe are shown in panels A and B. Mean cortical thickness and
gyrification index for the whole-brain and each lobe are shown in panels C–F.

http://human.brain-map.org/mri_viewers/data
http://human.brain-map.org/mri_viewers/data
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consistent with our findings in the IXI dataset (i.e., Fig. 6B): temporal,
parietal, frontal, occipital.

Thus, this dataset provides preliminary evidence that age-related
differences in cortical complexity (FDf) are present evenwhenheadmo-
tion cannot influence the MRI acquisition, and potentially also suggests
that FDf may be more robust to age-related differences in brain
morpohology than mean cortical thickness.

4. Discussion

Herewedemonstrate that fractional dimensionality of graymatter is
sensitive to age-related differences in cortical structure and, in fact, can
bemore sensitive to age-related differences than other metrics of corti-
cal integrity such as cortical thickness or gyrification. We also provide
evidence that fractional dimensionality is not redundant with these
other metrics; multivariate regression models that include multiple
metrics provide the best ability to track age-related differences. Frac-
tional dimensionality therefore appears to be a useful metric for studies
of cognitive aging, andwith this inmind, we additionally provide a new
toolbox to facilitate other researchers incorporating fractional dimen-
sionality into their investigations of age-related cognitive differences.

Previous research has shown that fractal dimensionality of the filled
volume, e.g., cortical ribbon, is related to both cortical thickness and
gyrification index (King et al., 2009, 2010). However, our findings clear-
ly show that fractal dimensionality also indexes other facets of cortical
morphology that result in a stronger correlation with age: Age-related
correlations with each of the cortical measures were notably higher
for fractal dimensionality [FDf: rp = −.732; CT: rp = −.603; GI:
rp = −.494]. We speculate that one possibility is that measurements
of cortical complexity are better able to capture differences in the or-
ganization of cortical regions than other measures such as cortical
thickness. It is also likely that fractal dimensionality is less suscepti-
ble to some artifacts than other measures, making it more sensitive
to age-related differences. For example, while measures of cortical
structure relate to age-related atrophy and cognitive abilities,
they also are influenced by ‘nuisance’ factors such as hydration
(Streitbürger et al., 2012) and head movement (e.g., Reuter et al.,
2015). It is plausible that cortical thickness may be more readily influ-
enced by these types of state changes than gyrification and cortical com-
plexity. Thus, considering several metrics (e.g., thickness, gyrification,
and complexity) will allow researchers to better index relevant differ-
ences in cortical structure.

Our regional analyses present an additional interesting finding: the
degree of age-related differences in morphology are not consistent
across measures. As others have found, the frontal and temporal lobes
weremore affected by age-relateddifferences than theparietal or occip-
ital lobes, whenmeasured using estimates of cortical thickness (but see
footnote 1). However, age-related differences were most prevalent in
the parietal lobe when measured using gyrification. There were some
commonalities across measures: With both cortical thickness and
gyrification, we found that the occipital lobe was least affected by age-
related differences. We observed a different pattern with fractal dimen-
sionality, where the temporal lobe was the least affected by age-related
differences. These differences provides evidence that fractal dimension-
ality is not merely pooling information that otherwise would be quanti-
fied by cortical thickness or gyrificiation index, but is also capturing
additional age-related differences in the cortical structure.

In addition to correlating with age, fractal dimensionality has been
shown to correlate with inter-individual variability in cognitive mea-
sures. In a cohort of over 200 adults aged about 68 years old, Mustafa
et al. (2012) found that individuals with greater whole-brain white-
matter complexity had higher fluid intelligence scores and less evidence
of age-related cognitive decline (also see Sandu et al., 2014). King et al.
(2010) also provide evidence that fractal dimensionality of the cortical
ribbon correlatedwith scores on a cognitive battery, and that this corre-
lation was qualitatively stronger than comparable correlations using
cortical thickness and gyrification index. Im et al. (2006) observed cor-
relations between whole-brain fractal dimensionality and both IQ and
years of education, though lobe-wise correlations were not significant.
Interestingly, the correlations with education were slightly stronger
than those with IQ, potentially suggesting an influence of education-
related development on cortical complexity. These findings support
the use of cortical complexity as a sensitive metric not only for age-
related differences in brain structure but also for capturing relations be-
tween brain structure and cognitive function.

We believe that fractal dimensionality provides an important addi-
tional measure of brain structures, providing uswith ameans to consid-
er differences in the shape of structures, rather the size (e.g., volume,
thickness). While here we measured changes in relatively coarse
parcellations of the cortex (i.e., lobes), more fine-grained parcellations
of cortical and subcortical regions can be calculated, and may be partic-
ularly useful when relating FD estimates to cognitive measures. As a
proof-of-principle, in the Appendix A we report age-related differences
in volume and FDf for the hippocampus (see Fig. A4). While some stud-
ies have been done comparing FD between healthy controls and patient
populations, these were done using whole-brain measures and could
also benefit from more fine-grained parcellations. It is also unclear
how head motion may affect estimates of FD. To this end, we addition-
ally provide our code as a MATLAB toolbox such that other researchers
can also readily calculate fractal dimensionality in their analyses.
5. MATLAB Toolbox

Given the utility of fractional dimensionality, we provide a freely
available MATLAB toolbox to calculate the fractal dimensionality of the
cortical ribbon or parcellated regions of cortex, using intermediate
files generated as part of the standard FreeSurfer analysis pipeline
(ribbon.mgz, aparc.a2009s+aseg.mgz), or directly from other 3D
volumes. The toolbox includes options to use different masking files
(and related documentation onmaking themasks) and is implemented
to use either the box-counting or dilation algorithms and to use either
the filled volume or just the surface of the structure. The toolbox can
easily be run on all of the participants in a FreeSurfer subject folder, or
just on specified subject folders. The toolbox can be downloaded from:
http://cmadan.github.io/calcFD/.

The MATLAB toolbox also includes several functions designed to
improve functionality, such as the automatic ‘cropping’ of the vol-
ume space to the smallest bounding box necessary to contain the
volume (while leaving sufficient space for the dilation of the vol-
ume), improving computation time drastically. Example files are
also provided to aid in using the toolbox for the user's needs. All of
the presented fractal dimensionality measures were obtained using
the provided toolbox without any further modification. On our ma-
chine, the FD calculations, using the dilation algorithm on filled vol-
umes (what most of the results are based on), took an average of 11 s
per participant for the whole-brain and 96 s per participant to deter-
mine the FDf for each of the four bilateral lobe structures. As a general
recommendation, we suggest using the dilation algorithm on filled
structures.
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Table A1
Benchmark statistics for eachof the benchmark structures (shown in Fig. A1). The geomet-
ric properties of each structure include the length of the longest dimension (L), volume
(V), surface area (SA), and the ratio of volume to surface area (V/SA). Fractal dimensionality
was calculated using four different methods, using either the box-counting or dilation al-
gorithms, and either only counting the surface voxels of the structure (FDs) or also includ-
ing the filled volume of the structure (FDf).

Geometric Box-Counting Dilation

Structure L V SA V/SA FDs FDf FDs FDf

Sphere 200 4,187,854 186,053 22.51 1.99 2.89 2.00 2.89
Cube 200 8,000,000 237,608 33.67 1.97 2.97 2.00 2.92
Menger-1 200 5,961,392 316,792 18.82 1.98 2.91 2.00 2.88
Menger-2 200 4,447,440 517,016 8.60 2.02 2.81 2.03 2.78
Menger-4 200 2,477,920 1,921,376 1.29 2.46 2.60 2.49 2.56
Newell Teapot 225 1,119,692 90,899 12.32 2.03 2.81 2.02 2.81
Stanford Bunny 221 2,211,262 167,897 13.17 2.03 2.81 2.01 2.82
Stanford
Armadillo

225 825,402 121,628 6.77 2.03 2.68 2.02 2.69

Mug 220 1,113,980 340,802 3.27 2.14 2.53 2.13 2.56
Fiber cup 223 245,102 69,926 3.41 1.96 2.40 2.00 2.46
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Appendix A

A.1. Benchmark performance

To evaluate the performance of the fractal dimensionality calcula-
tions, ten simulated phantom volumes were constructed in MATLAB
and saved in FreeSurfer's native .mgz format, and are provided with
the toolbox.

The first two structures were a sphere with a diameter of 200 voxels
and a cube with a width of 200 voxels. The next volumes were con-
structed to be a more complex structure, the Menger sponge. Briefly, a
Menger sponge is a cube-based 3-dimensional fractal, where the cube
is divided into a 9 × 9 × 9 grid and the middle sub-cubes from every
face are removed, as well as the center-most sub-cube. Thus, of the 27
sub-cubes (i.e., 93), only 20 remain. One iteration of this procedure is
shown in Fig. A1. This procedure can be infinitely iteratively repeated
for each of the sub-cubes, theoretically producing a structure with infi-
nite surface area, but zero volume. The Menger sponge is related to two
2-dimensional fractals, the Cantor set and the Sierpinski carpet. Herewe
constructed three Menger sponges, each with a width of 200 voxels:
first-iteration, second-iteration, and fourth-iteration. (A cube can be
considered a zero-iteration Menger sponge.) These five structures are
shown in the upper row of Fig. A1.

We additionally computed the fractal dimensionality of several
more complex structures, as shown in the lower row of Fig. A1. The
first three of these structures were selected because they have been
used as ‘standard’ benchmark objects in the 3Dmodeling and rendering
literature: the Newell Teapot, Stanford Bunny, and Stanford Armadillo
(e.g., Crow, 1987; Labatut et al., 2009). (Note, the teapot has a wall
thickness and is hollow inside, i.e., it is not a ‘filled’ teapot.) A mug
was included as a simple everyday object. The “Fiber Cup”was included
as a more complex object that was developed as a ground-truth phan-
tom volume for DTI analyses. The structural volume used here was
reproduced from Fig. 1 of Fillard et al. (2011) as we were unable to ob-
tain the original 3D volume. (The thickness of our volume does not
match the original as it was reproduced from only a 2D image.)
Fig. A1. 3D renderings of the benchmark structures used. See main text and Table 1 for
further details.
Table A1 shows the benchmark statistics for each of these structures.
Note, because we are calculating the surface area in voxels, the calcula-
tions are not the same as if the structures had surfaces with no thick-
ness. For instance, in the cube, voxels that are part of the upper edge
of a side should not be counted again as part of the top. As a result,
the surface area of the cube in voxels would not be 240,000
(i.e., 2002 × 6), but is instead 237,608 (i.e., 2003–1983). Similarly, be-
cause surface area was calculated as ‘surface’ voxels, the SA/V ratio can-
not become smaller than 1, i.e., every surface voxel counts towards the
volume and there are no ‘inner’ voxels.
Though fractal dimensionality is usually calculated only based on the
surface of the structure, King et al. (2010) found that additionally
counting the ‘filled’ volume can lead to better measurements of age-
related differences in cortical complexity, an approach that has also
been used in a number of other studies (e.g., Esteban et al., 2009; Im
et al., 2006; Kiselev et al., 2003). Here we computed two measures of
fractal dimensionality, one based on only the surface structure (FDs)
and one that also includes the filled volume (FDf).
Theoretically, a cube should have fractal dimensionality values cor-
responding to 2 and 3 for the surface and filled volumes, respectively.
A sphere should have a surface fractal dimensionality of 2, and a filled
fractal dimensionality slightly below 3. Our results match with these
values well.

For the Menger sponge volumes, an nth iteration structure, which
has infinite surface area and zero volume, should have a surface fractal
dimensionality of 2.73. We can see that the higher-iteration Menger
sponge structures have increasing surface fractal dimensionality values,
but we could not generate higher-iteration structures of comparable
resolution as brain volumes (i.e., constraints of voxel coordinate
space). We also see that the filled fractal dimensionality decreases
with higher iterations, as expected.

Though the theoretical fractal dimensionality values are not known
for the remaining structures, their inclusion is intended to aid the reader
in understanding how fractal dimensionality relates to a structure's
complexity. Additionally, the simulated phantom volumes for all ten
structures are included with the toolbox, allowing them to serve as
benchmarks for future work.

A.2. Formal comparison

To formally compare the two algorithms, box counting and dilation,
we generated 3D box structures that were based on a random subset of
cubes in a 20 × 20 × 20 arrangement. For each structure, we computed
the filled fractal dimensionality (FDf) using both the box-counting and
dilation algorithms. This was repeated for 10,000 simulated structures.

Generally, the algorithms were highly correlated in their fractal di-
mensionality estimates and deviations were minimal in magnitude
[r(9998)= .9997, p b .001; Difference: M (SD)= .0263 (.0096)]. None-
theless, we did find that the box-counting FDf was nearly always higher
than the FDf obtained using the dilation algorithm, as shown in Fig. A2.
Logically, this is due to a cumulative rounding error from the box-
counting algorithm using a fixed grid scan, while the dilation is effec-
tively using a sliding grid scan. This bias was higher for structures
with more extreme levels of fractal dimensionality (i.e., near to either
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2 or 3). Based on this comparison, we used the dilation algorithm in the
reported cortical complexity analyses, though both algorithms are im-
plemented in the MATLAB toolbox.
Fig. A2. Comparison between fractal dimensionality values (FDf) obtained using the box-
counting and dilation algorithms. Panel A shows axial slices and 3D volumes

Fig. A3. Examples of issues with cortical surfaces that resulted in exclusion. Panel A shows
an example of the surface boundary being too inclusive and including tissue surrounding
the gray matter; panel B shows an example of the surface reconstruction being too
representing the box-counting algorithm (compare with Fig. 2A). Panel B shows a
formal comparison between the two algorithms.
Fig. A4.Hippocampal volume and fractal dimensionality (FDf) for the individuals in the IXI
dataset. Panel A shows the scatter plot of age and volume, along with the correlation and
slope; panel B shows age and FDf.
A.3. IXI dataset

IDs for the 427 individuals included in the analyses reported here:
002, 012, 014, 015, 017, 019, 020, 021, 022, 023, 024, 025, 026, 027,
028, 029, 030, 031, 033, 034, 035, 036, 037, 039, 040, 042, 043, 044,
045, 046, 048, 049, 050, 051, 052, 053, 054, 055, 056, 057, 058, 060,
061, 062, 063, 064, 065, 067, 068, 069, 070, 071, 073, 074, 075, 076,
077, 078, 079, 080, 083, 084, 085, 086, 087, 089, 090, 092, 097, 098,
102, 105, 106, 107, 109, 110, 111, 113, 115, 118, 119, 120, 121, 122,
123, 126, 127, 128, 129, 130, 131, 134, 135, 137, 138, 140, 141, 142,
143, 144, 145, 148, 150, 151, 153, 154, 157, 158, 159, 160, 161, 163,
164, 166, 167, 169, 170, 172, 173, 174, 176, 177, 178, 180, 181, 182,
183, 184, 185, 186, 188, 189, 191, 192, 193, 195, 196, 197, 198, 200,
201, 202, 204, 205, 206, 207, 209, 212, 213, 214, 216, 217, 218, 219,
221, 222, 224, 225, 226, 227, 230, 231, 232, 233, 234, 237, 238, 239,
240, 241, 242, 244, 246, 247, 248, 249, 251, 253, 254, 255, 258, 259,
262, 264, 265, 266, 268, 269, 270, 275, 276, 277, 278, 279, 280, 282,
284, 285, 286, 287, 289, 290, 291, 294, 295, 296, 297, 298, 299, 304,
305, 306, 307, 308, 310, 311, 312, 315, 316, 318, 319, 320, 321, 322,
324, 325, 326, 328, 329, 332, 334, 335, 336, 338, 342, 344, 348, 350,
351, 353, 354, 356, 357, 358, 359, 360, 362, 363, 364, 365, 367, 368,
369, 370, 371, 372, 373, 375, 377, 378, 379, 380, 385, 386, 387, 388,
389, 390, 391, 392, 393, 396, 397, 398, 399, 401, 402, 403, 405, 408,
410, 411, 412, 414, 415, 418, 419, 420, 422, 427, 428, 431, 433, 434,
436, 437, 438, 439, 441, 442, 444, 445, 446, 447, 449, 450, 451, 452,
453, 454, 455, 456, 458, 459, 460, 461, 462, 467, 468, 469, 473, 474,
475, 476, 477, 478, 480, 482, 484, 485, 486, 487, 490, 493, 494, 495,
496, 498, 500, 502, 504, 505, 507, 508, 510, 516, 517, 522, 524, 525,
526, 527, 528, 531, 532, 534, 535, 536, 538, 539, 543, 544, 546, 547,
548, 549, 550, 551, 553, 554, 558, 559, 560, 561, 562, 563, 565, 566,
567, 568, 569, 572, 573, 574, 575, 576, 577, 578, 579, 582, 586, 587,
588, 591, 592, 593, 594, 595, 598, 601, 603, 605, 606, 607, 609, 612,
613, 614, 616, 617, 618, 621, 625, 626, 627, 629, 631, 634, 639, 640,
641, 642, 644, 648, 652, 653, 662.
A.4. Subcortical volumes

As a proof-of-principle,we have calculated the age-related differences
in the hippocampus, as measured as using volume and FDf. Hippocampal
volumewas estimated using FreeSurfer, and the sum of the left and right
hemisphere volumes was used in the analysis. Prior to computing the
partial correlation (controlling for sex and site), volume was taken as
the residual after regressing on ICV (e.g., seeWalhovd et al., 2011). Fractal
dimensionality (of the filled structure) was calculated based on the bilat-
eral structure, using the provided toolbox. We observed age-related
differences in both hippocampal volume and structural complexity
[volume: rp(420) =−.342, p b .001; FDf: rp(420) =−.273, p b .001].

restrictive and missing portions of gray matter.
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