
NEUROSYSTEMS

Predicting age from cortical structure across the lifespan

Christopher R. Madan1,2 and Elizabeth A. Kensinger2
1School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
2Department of Psychology, Boston College, Chestnut Hill, MA, USA

Keywords: aging, brain morphology, cortical complexity, fractal dimensionality, gyrification, structural MRI

Abstract

Despite interindividual differences in cortical structure, cross-sectional and longitudinal studies have demonstrated a large degree
of population-level consistency in age-related differences in brain morphology. This study assessed how accurately an individual’s
age could be predicted by estimates of cortical morphology, comparing a variety of structural measures, including thickness, gyri-
fication and fractal dimensionality. Structural measures were calculated across up to seven different parcellation approaches,
ranging from one region to 1000 regions. The age prediction framework was trained using morphological measures obtained from
T1-weighted MRI volumes collected from multiple sites, yielding a training dataset of 1056 healthy adults, aged 18–97. Age pre-
dictions were calculated using a machine-learning approach that incorporated nonlinear differences over the lifespan. In two inde-
pendent, held-out test samples, age predictions had a median error of 6–7 years. Age predictions were best when using a
combination of cortical metrics, both thickness and fractal dimensionality. Overall, the results reveal that age-related differences
in brain structure are systematic enough to enable reliable age prediction based on metrics of cortical morphology.

Introduction

It is well established that the structure of the brain changes as
adults age—with decreases in cortical thickness as one of the most
pronounced of these changes (e.g., Jernigan et al., 2001; Salat
et al., 2004; Raz & Rodrigue, 2006; Fjell et al., 2009, 2013; Hut-
ton et al., 2009; Lemaitre et al., 2012; Hogstrom et al., 2013;
McKay et al., 2014; Irimia et al., 2015; Madan & Kensinger,
2016). However, other measures of cortical structure are also sensi-
tive to age-related differences, such as gyrification (Magnotta et al.,
1999; Hogstrom et al., 2013; Madan & Kensinger, 2016; Wang
et al., 2016; Cao et al., 2017; Jockwitz et al., 2017), which is a
ratio of the regional surface area relative to the surface area of a
simulated enclosing surface (Zilles et al., 1988, 1989; Hofman,
1991; Armstrong et al., 1995; Toro et al., 2008; Kochunov et al.,
2012). More recently, a mathematical measure of the complexity of
a structure, fractal dimensionality, has also been shown to index
age-related differences in brain structure (Madan & Kensinger,
2016). While the use of fractal dimensionality with cortical aging is
recent, it has been used in prior studies investigating differences
in cortical structure in patient populations (Cook et al., 1995;
Free et al., 1996; Thompson et al., 2005; Sandu et al., 2008; King
et al., 2009, 2010; Wu et al., 2010; Nenadic et al., 2014), as well

as cross-species comparisons (Hofman, 1991). Importantly, age-
related differences in these structural measures are not homogenous
across the cortex; decreases in cortical thickness are most evident
in frontal regions, while gyrification decreases primarily in parietal
cortex. Given this, we wondered what degree of precision is useful
in understanding age-related differences in cortical structure. Fur-
thermore, it is unknown how well the relation between age and cor-
tical structure metrics will generalize across independent samples.
In this study, we sought to examine (1) the relative sensitivity of
different cortical measures to age-related differences across the adult
lifespan, (2) the granularity of these differences across different cor-
tical parcellation approaches and (3) how well these different mea-
sures and parcellations can be used to predict age in independent
samples. These findings should further our understanding of the
neurobiological basis of healthy aging (Falk et al., 2013; Reagh &
Yassa, 2017).

Cortical metrics and granularity

While there is heterogeneity in age-related differences in cortical
structure—for example, greater cortical thinning in frontal cortex than
occipital (Sowell et al., 2003; Salat et al., 2004; Allen et al., 2005;
Fjell et al., 2009; Hutton et al., 2009; Hogstrom et al., 2013)—it is
unclear what degree of parcellation would be beneficial in characteriz-
ing healthy aging. Lobe-wise estimates of cortical thickness would
likely be beneficial relative to overall mean cortical thickness, but
would estimate for distinct gyri and lobules provide additional infor-
mation? At some level of parcellation, additional predictive features
should diminish, as cortical thickness between adjacent patches of
cortex would be highly similar (within an individual).
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Here, we investigated three measures of cortical structure—thick-
ness, gyrification and fractal dimensionality. These measures were
selected based on prior studies that had identified relationships
between these measures and healthy aging, although these previous
studies had used correlations rather than predictive models (e.g.,
Salat et al., 2004; Fjell et al., 2009; Hogstrom et al., 2013; McKay
et al., 2014; Madan & Kensinger, 2016). This approach of using
surface-based morphology allowed us to examine distinct measures
of cortical structure. In particular, this is in contrast to voxel-based
morphology (VBM) techniques which estimate gray matter volume
and are influenced by a combination of structural features (Hutton
et al., 2009; Palaniyappan & Liddle, 2012; Fairchild et al., 2015;
Gerrits et al., 2016). This point is made explicit by Mechelli et al.
(2005), ‘exactly the same differences would be detected when com-
paring images of thin, unfolded cortex against thin, folded cortex
and thick, unfolded cortex’ (see figure 5 of Mechelli et al., 2005).
As such, VBM is not sensitive to precise features as we sought to
examine here, whereas surface-based morphometry captures these
details unambiguously.

Many different approaches have been suggested to parcellate the
human cortex (see Zilles & Amunts, 2010; for a review); here, we
used seven parcellation approaches, focusing on atlases that have been
implemented within FreeSurfer. The two standard parcellation atlases
within FreeSurfer are the Desikan–Killiany–Tourville (DKT) atlas
(Desikan et al., 2006; Klein & Tourville, 2012) and the Destrieux
atlas (Destrieux et al., 2010), which divide the cortex into 62 and 148
parcellations, respectively. Both of these atlases define boundaries
based on anatomical landmarks, with the main difference being that
the Destrieux atlas divides gyri and sulci into separate parcellations,
while the DKT atlas generally uses sulci as parcellation boundaries
between gyri, as shown in Fig. 1. As two coarse atlases, we also con-
sidered the unparcellated cortical ribbon (i.e., only one region) as well
as a lobe-wise parcellation (four regions). Supplementing the parcella-
tion atlases standard within FreeSurfer, we also conducted analyses
using structural metrics derived from three additional parcellation
schemes: von Economo–Koskinas (86 regions; Scholtens et al.,
2018), Brainnetome (210 regions; Fan et al., 2016), and Lausanne
(1000 regions; Hagmann et al., 2008). The von Economo–Koskinas

Fig. 1. Inflated and pial surfaces and an oblique coronal slice, from a young adult (20-year-old male), illustrating the seven parcellation approaches used. [Col-
our figure can be viewed at wileyonlinelibrary.com].
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atlas was developed by Scholtens et al. (2018), based on the founda-
tional work of von Economo & Koskinas (1925, 2008). This parcella-
tion atlas is based on the cyctoarchitecture of the cortex [also see von
Economo, 1927, 2009; previously some have used a hybrid approach
to integrate von Economo’s work with the Desikan–Killiany atlas
(Scholtens et al., 2015; van den Heuvel et al., 2015)]. The Brain-
netome atlas takes a different approach, using the Desikan–Killiany
atlas and further parcellating it based on connectivity data from diffu-
sion and resting-state scans (Fan et al., 2016). The Lausanne atlas also
initially starts from the Desikan–Killiany atlas and then further parcel-
lates it into patches of approximately similar area (Hagmann et al.,
2008); here, we used the 1000 parcellation variant, although variants
with less patches also exist. By predicting age in independent samples,
across these different parcellation approaches, we can assess the corti-
cal granularity of different structural metrics in relation to age-related
differences in cortical structure.
While these parcellations are defined using anatomical landmarks,

different parcellation approaches exist and it is unknown to what
degree more discrete cortical parcellation regions—the topological
granularity—will provide additional predictive value to inform the age
prediction performance. It is also unknown whether some metrics of
brain morphology would yield better prediction accuracy than others;
the topology of age-related differences in thickness and gyrification
has been shown to differ, and thus, they may be indicators of distinct
aging processes (Hogstrom et al., 2013; Madan & Kensinger, 2016).
More recently, we have shown that measures of fractal dimensionality
can show stronger age correlations than measures of cortical thickness
and gyrification (Madan & Kensinger, 2016), but it was not known
whether this would translate to additional predictive accuracy.

Predicting age from cortical measures

Although age-related differences in brain morphology are robust, there
also can be extensive individual variability in the trajectory of brain
aging (e.g., Pfefferbaum & Sullivan, 2015), and cross-sectional com-
parisons demonstrate that some older adults can have similar mean
cortical thickness volumes as young adults (e.g., Salat et al., 2004;
Fjell et al., 2009; Madan & Kensinger, 2016). In the absence of
acquiring multiple MRI scans from the same individual, there are no
methods that can easily discriminate among different age-related tra-
jectories, nor is there agreement as to which metrics might be the best
for identifying which individuals are likely to be on an accelerated-
aging trajectory. This study took a first step by examining which par-
cellation techniques and estimates of cortical morphology would best
predict an individual’s age. Critically, here we measured the age pre-
dictions, rather than simply correlations with age, because significant
relationships are not necessarily indicative of predictive value (e.g.,
see Lo et al., 2015). As a further point of consideration, age-related
differences in these metrics have been shown to be nonlinear (Fjell
et al., 2010, 2013), with age-related trajectories declining more stee-
ply after ‘critical ages’ that also differ across structures (generally
occurring between ages 40 and 70). Based on this evidence, we used a
multiple smoothing spline-based regression procedure (Madan, 2016).
Figure 2 shows representative cortical surfaces for individuals with
ages in the first year of each decade, for each sex and training dataset
used here. These cortical surfaces visibly show the degree of interindi-
vidual differences in cortical structure, but also make apparent the
age-related differences in gyrification and sulcal width, along with
other structural characteristics such as Yakovlevian torque. It is also
visible here that male brains are generally slightly larger than female
brains and that brain size tends to decrease with age. (Note that these

are representative individual brains from the datasets used here, how-
ever, and not ‘average’ brains.)
Here, we sought to predict an individual’s age from their brain

morphology, attempting to optimize the brain parcellation and seg-
mentation techniques so as to maximize their predictive accuracy.
Although a few others have similarly sought to predict an individ-
ual’s age from structural MRI volumes (e.g., Ashburner, 2007;
Franke et al., 2010, 2014; Franke & Gaser, 2012; Cole et al., 2015;
Schnack et al., 2016; see Cole & Franke, 2017; for a review), these
implementations relied on voxel-based morphometry (VBM) rather
than regional surface-based morphology estimates and thus cannot
be used to assess the predictive value of specific morphological fea-
tures (e.g., thickness, gyrification) and cortical granularity as sought
here. To construct this age prediction model, we used several open-
access MRI datasets. The public sharing of MRI data has been
quickly growing, and a large number of open-access datasets are
now available (Biswal et al., 2010; Mennes et al., 2013; Poldrack
& Gorgolewski, 2014; Das et al., 2017; Madan, 2017; Poldrack
et al., 2017; Shenkin et al., 2017). The use of open-access datasets
enabled us to have the large sample sizes needed to have training
datasets as well as held-out datasets, as well as demonstrate the gen-
eralizability and reproducibility of the presented results, although
this was not possible only a few years ago (Dickie et al., 2012).
Figure 3 provides an overview of factors that are known to influence

estimates of brain morphology. These factors can be quite varied, rang-
ing from transient changes, such as time-of-day (Nakamura et al., 2015;
Trefler et al., 2016) and hydration (Duning et al., 2005; Nakamura
et al., 2014), to more long-lasting changes, such as exercise (Hayes
et al., 2014; Steffener et al., 2016), diet/lifestyle (Booth et al., 2015;
Khan et al., 2015; Kullmann et al., 2016) and meditation (Tang et al.,
2015). Brain morphology has also been linked with genetic variations,
such as APOE and BDNF (see Strike et al., 2015; for a comprehensive
review). As such, it is important to acknowledge the breadth of effects
that influence any measure of brain morphology. Although some of
these sources of variability would be minimized if multiple scans were
taken (e.g., at different times of day or with different levels of hydration),
any model predicting an individual’s age from only brain morphology
estimates will be unable to account for some additional sources of vari-
ance and thus will have some degree of error. Nevertheless, it is useful
to understand how well age predictions can be made on the basis of a
structural scan that can be acquired in just a few minutes. Not only is this
a relevant exercise for confirming the aspects of brain structure that are
most strongly associated with age-associated differences, it also has
potential clinical relevance; if the brain structure of healthy adults is a
reasonable predictor of their age, then failures in age prediction (e.g., a
structural scan that suggests someone is a decade older than they are)
may help to indicate the presence of a prodromal state (Franke et al.,
2010, 2014; Franke & Gaser, 2012; Cole et al., 2015; Schnack et al.,
2016; see Cole & Franke, 2017; for a review). While the current focus is
on age-related differences through the adult lifespan, brain structure has
also been examined through development (Dosenbach et al., 2010;
Brown et al., 2012; Lee et al., 2014; Qin et al., 2015; Mills et al.,
2016; Somerville, 2016).

Procedure

Datasets

Three datasets were used to train the age prediction algorithm, with
an additional two datasets used as independent test samples. The
age distribution for each of the datasets is shown in Fig. 4.

© 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 47, 399–416

Predicting age from cortical morphology 401



Training Sample 1 (IXI) consisted of 427 healthy adults, (260
females) aged 20–86, from the publicly available Information
eXtraction from Images (IXI) dataset (http://brain-development.org/
ixi-dataset/). This is the same subset of individuals we used previ-
ously to investigate age-related differences in cortical regions; see
Madan & Kensinger (2016, 2017a) for further details.
Training Sample 2 (OASIS) consisted of 314 healthy adults (196

females), aged 18–94, from the publicly available Open Access Ser-
ies of Imaging Studies (OASIS) cross-sectional dataset (Marcus
et al., 2007; http://www.oasis-brains.org). Participants were screened
for neurological and psychiatric issues; the Mini-Mental State Exam-
ination (MMSE) and Clinical Dementia Rating (CDR) were admin-
istered to participants aged 60 and older. In the current sample,
participants with a CDR above zero were excluded; all remaining
participants scored 25 or above on the MMSE. Multiple T1 volumes
were acquired using a Siemens Vision 1.5 T with a MPRAGE
sequence; only the first volume was used here. Scan parameters
were as follows: TR = 9.7 ms; TE = 4.0 ms; flip angle = 10°;
voxel size = 1.25 9 191 mm. This sample was previously used in
Madan & Kensinger (2017a) and Madan (2018).
Training Sample 3 (DLBS) consisted of 315 healthy adults (198

females), aged 20–89, from wave 1 of the Dallas Lifespan Brain
Study (DLBS), made available through the International Neu-
roimaging Data-sharing Initiative (INDI; Mennes et al., 2013) and
hosted on the Neuroimaging Informatics Tools and Resources

Fig. 3. Overview of factors known to influence estimates of brain morphol-
ogy. [Colour figure can be viewed at wileyonlinelibrary.com].

Fig. 2. Cortical surfaces for each age decade, sex, and training sample. Representative cortical surface reconstructions for individuals with ages in the first year
of each decade (with the exception of 40 s, where there were insufficient male participants between ages 40 and 41). All reconstructions are shown at the same
scale. 3D reconstruction images were generated as described in Madan (2015). [Colour figure can be viewed at wileyonlinelibrary.com].
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Clearinghouse (NITRC; Kennedy et al., 2016) (http://fcon_1000.pro
jects.nitrc.org/indi/retro/dlbs.html). Participants were screened for
neurological and psychiatric issues. All participants scored 26 or
above on the MMSE. T1 volumes were acquired using a Philips
Achieva 3 T with a MPRAGE sequence. Scan parameters were as
follows: TR = 8.1 ms; TE = 3.7 ms; flip angle = 12°; voxel
size = 1 9 191 mm. See Kennedy et al. (2015) and Chan et al.
(2014) for further details about the dataset; this sample was previ-
ously used in Madan (2018).
Test Sample 1 consisted of 176 healthy adults (89 females), aged

18–83, recruited by the Cognitive and Affective Laboratory at Bos-
ton College (BC) and screened for neurological and psychiatric
issues, and to have scored above 26 on the MMSE. T1 volumes
were acquired using a Siemens Trio 3 T with a MEMPRAGE
sequence optimized for morphometry studies (van den Heuvel et al.,
2008; Wonderlick et al., 2009). Scan parameters were as follows:
TR = 2530 ms; TE = 1.64, 3.50, 5.36, 7.22 ms; flip angle = 7°;
voxel size = 1 9 191 mm. This sample was previously used in
Madan & Kensinger (2017a).
Test Sample 2 consisted of 116 healthy adults (70 females), aged

20–87, recruited by Dr. Craig Stark’s laboratory at University of
California–Irvine (UCI) and screened for neurological and psychi-
atric issues, and to have scored above 26 on the MMSE, made
available on NITRC (Kennedy et al., 2016) (https://www.nitrc.org/
projects/stark_aging/). T1 volumes were acquired using a Philips
Achieva 3 T with a MPRAGE sequence. Scan parameters were as
follows: TR = 11 ms; TE = 4.6 ms; flip angle = 12°; voxel
size = 0.75 9 0.75 9 0.75 mm. See Stark et al. (2013) and Bennett
et al. (2015) for further details about the dataset.

Pre-processing of the structural MRIs

Data were analyzed using FreeSurfer v.5.3.0 (https://surfer.nmr.mgh.
harvard.edu) on a machine running CentOS 6.6. FreeSurfer was

used to automatically volumetrically segment and parcellate cortex
from the T1-weighted images (Dale et al., 1999; Fischl et al., 1999,
2002, 2004; Fischl & Dale, 2000; Fischl, 2012). FreeSurfer’s stan-
dard pipeline was used (i.e., recon-all), and no manual edits
were made to the surface meshes. Cortical thickness is calculated as
the distance between the white matter surface (white–gray interface)
and pial surface (gray–CSF interface) (Dale et al., 1999; Fischl &
Dale, 2000). Thickness estimates have previously been found to be
in agreement with manual measurements from MRI images (Kuper-
berg et al., 2003; Salat et al., 2004), as well as ex vivo tissue mea-
surements (Rosas et al., 2002; Cardinale et al., 2014). Gyrification
was calculated using FreeSurfer, as described in Schaer et al.
(2012).

Cortical parcellations

Here, we used seven parcellation atlases to determine the amount
of relevant age-related differences in cortical structure: (1) entire
cortical ribbon (one region; i.e., unparcellated); (2) each of the
four lobes (four regions); (3) DKT atlas (62 regions; Klein &
Tourville, 2012); (4) Destrieux et al. (2010) atlas (148 regions);
(5) von Economo–Koskinas atlas (86 regions; Scholtens et al.,
2018); (6) Brainnetome atlas (210 regions; Fan et al., 2016); and
(7) Lausanne atlas (1000 regions; Hagmann et al., 2008). Each of
these parcellation approaches is shown in Fig. 1. The DKT and
Destrieux atlases are included as standard parcellation atlases
within FreeSurfer. The lobe parcellation was delineated by group-
ing parcellation regions from the Destrieux atlas, as done in
Madan & Kensinger (2016).
The von Economo–Koskinas, Brainnetome and Lausanne atlases

were applied to each individual’s reconstructed cortical surface using
mris_ca_label with the cortical parcellation atlas files
(*.gcs) that have been distributed online by the respective
researchers. The von Economo–Koskinas atlas was implemented in

Fig. 4. Age distributions for each of the datasets. (A) Age distributions for each of the datasets used in the training. (B) Age distribution for the aggregated
training dataset (i.e., combining IXI, OASIS, and DLBS). (C) Age distributions for the independent test datasets. [Colour figure can be viewed at wileyonlineli-
brary.com].
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FreeSurfer by Scholtens et al. (2018; http://www.dutchcon
nectomelab.nl/economo/), based on the cortical areas identified by
von Economo & Koskinas (1925). The Brainnetome atlas was
developed by Fan et al. (2016; http://atlas.brainnetome.org) based
on a modified Desikan–Killiany atlas (Desikan et al., 2006; a pre-
cursor to the DKT atlas) that initially reduced the number of cortical
regions to 20 per hemisphere (rather than the 34) but then further
parcellated the cortex using connectivity data extracted from diffu-
sion and resting-state scans, resulting in a total of 210 regions. The
Lausanne atlas was similarly initially constructed using the
Desikan–Killiany atlas and then further subdivided each region into
smaller patches of approximately equivalent area (Hagmann et al.,
2008). The Lausanne atlas is distributed as part of the Connectome
Mapper (Daducci et al., 2012; https://github.com/LTS5/cmp).

Fractal dimensionality

The complexity of each structure was calculated using as the frac-
tal dimensionality of the filled structure. Our work previously
demonstrated that fractal dimensionality indexes age-related differ-
ences in cortical and subcortical structures better than extant mea-
sures (i.e., cortical thickness, cortical gyrification, subcortical
volume), where older adults exhibit reductions in structural com-
plexity relative to younger adults (Madan & Kensinger, 2016,
2017a; Madan, 2018). In fractal geometry, several approaches have
been proposed to quantify the ‘dimensionality’ or complexity of a
fractal; the approach here calculates the Minkowski–Bouligand or
Hausdorff dimension (see Mandelbrot, 1967). This structural prop-
erty can be measured by considering the 3D structure within a grid
space and counting the number of boxes that overlap with the
edge of the structure. By then using another grid size (i.e., chang-
ing the box width), the relationship between the grid size and
number of counted boxes can be determined (‘box-counting algo-
rithm’). Here, we used box sizes (in mm) corresponding to powers
of 2, ranging from 0 to 4 (i.e., 2k [where k = {0, 1, 2, 3, 4}] = 1,
2, 4, 8, 16 mm). The slope of this relationship in log-log space is

the fractal dimensionality of the structure. Thus, the corresponding
equation is:

FD ¼ �D log2ðCountÞ
D log2ðSizeÞ

If only the boxes overlapping with the edge/surface of the struc-
ture are counted, this slope represents the fractal dimensionality of
the surface (FDs). If the boxes within the structure are additionally
counted, the resulting slope represents the fractal dimensionality of
the filled volume (FDf; see Fig. 5). As the relative alignment of the
grid space and the structure can influence the obtained fractal
dimensionality value using the box-counting algorithm, we instead
used a dilation algorithm that is equivalent to using a sliding grid
space and calculating the fractal dimensionality at each alignment
(Madan & Kensinger, 2016, 2017b).
Fractal dimensionality was calculated using the calcFD toolbox

(Madan & Kensinger, 2016; http://cmadan.github.io/calcFD/).
Briefly, the toolbox calculates the ‘fractal dimensionality’ of a 3D
structure and is designed to use intermediate files from the standard
FreeSurfer analysis pipeline. calcFD was first applied to measure the
complexity of the cortical ribbon and lobes (Madan & Kensinger,
2016), but has been extended to subcortical structures (Madan &
Kensinger, 2017a; Madan, 2018), and the DKT parcellation atlas
(Madan & Kensinger, 2017b).
Here, we only used the fractal dimensionality of the filled struc-

tures (FDf), as this measure has been demonstrated to be more sensi-
tive, than the fractal dimensionality of the surface, to age-related
differences in cortical structure (Madan & Kensinger, 2016). For
each participant, the fractal dimensionality was calculated for (a)
entire cortical ribbon (one region); (b) four lobes (four regions); (c)
DKT-parcellated atlas (62 regions); and (d) von Economo–Koskinas
atlas (86 regions). As smaller parcellations of cortex inherently have
decreased fractal dimensionality, that is, becoming closer to a trun-
cated rectangular pyramid, we did not calculate the fractal dimen-
sionality for the parcellation atlases with smaller regions (see Fig. 1)

Fig. 5. Illustration of how fractal dimensionality is measured from a 2D structure. Modified from Madan and Kensinger (2016). [Colour figure can be viewed
at wileyonlinelibrary.com].
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(Madan & Kensinger, 2017a,b). Indeed, prior analyses indicated that
the parcellations in the Destrieux atlas were too fine-grained for
meaningful fractal dimensionality calculations but that the regions
within the DKT atlas were of sufficient size (Madan & Kensinger,
2017b).

Age prediction algorithm

A machine-learning approach was used to predict age (in years)
from brain morphology. Specifically, we trained a machine-learning
regression framework with the aggregated training data (N = 1056),
using brain morphology data to predict the age data. We then
applied the trained regression model to the brain morphology data
from the test samples to obtain age predictions. Age predictions
were then compared with the actual age data. Performance of the
age predictions was evaluated using two metrics: R2 and MdAE. R2

was used as a measure of explained variability. Median absolute
error (MdAE) has been found to be more robust to outliers than
mean squared error (MSE) (Armstrong & Collopy, 1992; Hyndman
& Koehler, 2006).
The machine-learning regression framework primarily relies on

several statistical methods to minimize over-fitting through regular-
ization, dimensionality reduction and feature selection. This is
accomplished through sequentially applying three statistical tech-
niques: smoothing spline regression, PCA and relevance vector
regression (RVR)—which we have implemented as a MATLAB
toolbox called Prism (Madan, 2016). These statistical techniques are
described further below. As a whole, Prism is a MATLAB toolbox
designed for conducting spline-based multiple regression using train-
ing and test datasets. Benchmark analyses indicated that Prism pro-
vided better age prediction estimates than standard RVR (Madan,
2016). Prism was configured to (a) use least-squares splines to
reduce over-fitting (smoothness parameter set to 0.1) and (b) keep
the principal components that explained the most variance, retaining
as many components as necessary to explain 95% of the variance.
Values were Z-scored prior to the smoothing spline regression to
ensure that different measures were smoothed to the same degree, as
the smoothness parameter is influenced by the overall magnitude of
the input values (as in Madan, 2018).

Relevance Vector Regression (RVR)

To make predictions using the structural measures, we employed rel-
evance vector regression (RVR). RVR is the application of rele-
vance vector machine or RVM to a regression problem and is a
relatively recent machine-learning technique (Tipping, 2000, 2001;
Tipping & Faul, 2003). In functionality, RVM shares many charac-
teristics with support vector machines (SVM), but is generally more
flexible (Tipping, 2000). RVM can also be considered as a special
case of a Sparse Bayesian framework (Tipping, 2001; Tipping &
Faul, 2003) or Gaussian process (Rasmussen & Williams, 2006).
For a more in-depth discussion of RVM, see Bishop (2006).
Broadly, RVR is similar to multiple linear regression with regu-

larization (e.g., LASSO and ridge regression; see Tibshirani, 1996;
Hastie et al., 2009), which reduces the number of predictors/model
complexity by removing those predictors that are redundant, reduc-
ing over-fitting and yielding a more generalizable model. The imple-
mentation of this procedure is sometimes referred to as automatic
relevance determination (ARD) (MacKay, 1996; Wipf & Nagarajan,
2007). Further, it has been suggested that RVR is comparable to a
Bayesian implementation of LASSO regression (Park & Casella,
2008; Gao et al., 2010; Jamil & ter Braak, 2012). Here, we used

the MATLAB implementation of RVM that uses an accelerated
training algorithm (Tipping & Faul, 2003), freely available from the
author’s website (http://www.miketipping.com/sparsebayes.htm).

Smoothing spline regression

While age-related changes in morphology are often modeled using
linear and quadratic functions (e.g., Sowell et al., 2003; Walhovd
et al., 2011; Hogstrom et al., 2013; Madan & Kensinger, 2016),
nonlinear functions have been shown to better model age-related dif-
ferences (Fjell et al., 2010, 2013). This approach uses smoothing
spline regression, where the relationship between a predictor and
dependent variable is fit using piece-wise cubic functions (Wahba &
Wold, 1975; Wahba, 1990; Fox, 2000). Cubic smoothing spline is
implemented in MATLAB as the function csaps. Here, each pre-
dictor (i.e., brain morphology measure) was treated as an indepen-
dent predictor of age and was individually regressed vs. age. To
combine these estimates, that is, for multiple regression, the Prism
toolbox was used (Madan, 2016).

Held-out test data

Age prediction performance here was evaluated using independent
test datasets. This approach was taken to ensure that the age predic-
tions were not biased—for instance, numerous studies have demon-
strated that performance with k-fold cross-validation can lead to
over-fitting in the model selection (e.g., Golbraikh & Tropsha, 2002;
Rao et al., 2008; Saeb et al., 2016; Skocik et al., 2016).

Pre- and post-processing

Data were maintained as three separate datasets: training, test sample
1 and test sample 2. Within each dataset, main effects of sex were
initially regressed out before being entered into the machine-learning
regression framework; the main effect of site was also regressed out
for the training dataset. Outputted age predictions were mean cen-
tered (to the mean of the predicted ages) to compensate for sample
differences (as in Franke et al., 2010; Franke & Gaser, 2012). The
variance in the predicted ages in the test data was also matched to
variance of the training data, to correct for a regression-to-the-mean
bias.

Results

Regional age-related differences in cortical structure

In our prior work investigating age-related differences in cortical
structure (Madan & Kensinger, 2016), we had only used bilateral
lobe parcellations (i.e., four regions). However, in subsequent work,
our fractal dimensionality analyses were used with the DKT parcel-
lation, with 62 cortical parcellations (Madan & Kensinger, 2017b).
While we use this improved parcellation method in the current
paper, along with multiple regression methods to estimate age pre-
dictions in held-out test samples, we thought it would be useful to
calculate the relationship between structural measures for each par-
cellation with age.
We used a smoothing spline regression approach, as described in

the methods, with the full training dataset (N = 1056). All of the
regressions controlled for effects of site.
We first conducted smoothing spline regressions using the cortical

ribbon measures. Interindividual differences in mean cortical thick-
ness explained 47.17% of the variance in age (i.e., R2). Mean
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gyrification explained 36.07% of the variance; fractal dimensionality
(of the filled volume) explained 73.53% of the variance. Reassur-
ingly, these values correspond reasonably well with the variances
explained in the independent, held-out test samples (see Table 1).
For comparison, with linear and quadratic effects in the IXI sample
alone, these values were 33.55, 20.61 and 51.66%, respectively (as
reported in Madan & Kensinger, 2016); the relative increases in the
explained variance correspond to the use of spline regression,
instead of linear and quadratic regression, and also indicate that our
overall approach and between-site harmonization was successful.
We subsequently conducted similar smoothing spline regressions

for each of the 62 cortical parcellations of the DKT atlas, as shown
in Fig. 6A. The cortical thickness and gyrification analyses corre-
spond well with the comparable analysis by Hogstrom et al. (2013).
Age-related differences in cortical thickness are most pronounced in
frontal regions and the superior temporal gyrus, and are least
effected in occipital regions, the superior parietal lobule and the
postcentral gyrus. In contrast, age-related differences in gyrification
are most pronounced in the pre- and postcentral gyri, caudal middle
frontal gyrus, as well as supramaginal gyrus and inferior parietal
lobule. Frontal regions and parcellations on the medial surface have
the least age-related differences in gyrification.
Age-related differences in fractal dimensionality have a topology

that resembles a mixture of the thickness and gyrification patterns,
but is generally higher in explained variance (i.e., R2). Regional
fractal dimensionality was most affected by age in the superior tem-
poral gyrus and inferior parietal lobule, although frontal regions
were also markedly affected. Interindividual differences in fractal
dimensionality of the inferior temporal gyrus and regions along the
medial surface were the least associated with age.
As shown in Fig. 6B, we also conducted a similar analysis using

the von Economo–Koskinas atlas (Scholtens et al., 2018) and found
a similar pattern of results across the parcellations and cortical mea-
sures. Figure 6C shows that the most age-sensitive regions from the
other atlases generalize to the Brainnetome atlas as well; however,

thickness of many parcellations are only weakly related to age,
likely due to the substantially smaller regions here and an increasing
role of interindividual differences and regional specificity.

Age prediction models

To investigate the relationship between brain morphology and age-
prediction performance, we first calculated a benchmark measure
and then compared age prediction models using regional cortical
thickness for each of the seven parcellation approaches. Next, we
compared different structural measures (i.e., thickness, gyrification,
fractal dimensionality and a combination of all three) across four
parcellation atlases. Finally, we took a theoretical approach to com-
bining the morphological measures to best capture age-related differ-
ences in structure. Results from the age prediction models are
summarized in Table 1.

Benchmark performance

To provide a benchmark to evaluate the age prediction performance
in the held-out test data using the various estimates of brain mor-
phology, a simple estimation of a lower-bound (shown in light gray
in Fig. 7) was determined by ‘predicting’ that all participants’ ages
in the test dataset were the mean of the dataset. As such, R2 = 0 for
this benchmark model, and we would not expect any reasonable age
prediction model to produce worse estimates than this.
In Fig. 7, each box-and-whisker denotes the median (i.e., MdAE)

as a tick mark. The box spans the 25th to 75th percentiles; the whis-
kers span the 10th to 90th percentiles.

Cortical thickness

Performance for the age prediction models based on cortical thick-
ness, for each of the seven parcellation approaches, is shown in
Fig. 7 and Table 1. Results show that finer-grain parcellations

Table 1. Summary of age prediction model performance

Parcellation Measure # Regions

Test sample 1 Test sample 2

Percentiles

R2

Percentiles

R210th 25th 50th 75th 90th 10th 25th 50th 75th 90th

Ribbon Thickness 1 2.3 4.2 8.7 16.9 27.7 .54 2.5 8.1 14.9 20.2 27.9 .36
Gyrification 1 1.1 4.3 9.8 17.4 24.8 .54 2.9 6.4 10.7 18.6 26.9 .45
FD 1 1.7 3.1 5.6 11.8 17.8 .76 1.3 4.4 8.7 14.8 22.1 .64
Combined 3 1.0 2.7 6.9 10.9 20.1 .74 1.6 5.8 8.6 15.6 21.0 .61

Lobe Thickness 4 1.8 3.7 8.8 15.9 27.0 .50 3.7 7.9 12.5 21.6 29.9 .35
Gyrification 4 1.5 4.7 9.3 17.8 24.3 .56 2.5 6.4 11.6 17.1 24.9 .50
FD 4 1.0 3.0 6.5 12.7 16.5 .77 1.8 3.2 6.8 14.3 20.7 .71
Combined 12 0.8 2.9 7.0 10.3 18.1 .79 1.4 2.6 7.9 15.1 18.3 .71

DKT Thickness 62 1.7 4.2 8.9 15.3 24.1 .59 4.0 7.3 10.6 18.4 24.1 .52
Gyrification 62 2.1 3.8 8.6 18.1 21.6 .62 2.6 4.2 7.2 15.3 23.5 .49
FD 62 1.8 3.5 7.7 13.9 18.9 .67 2.7 5.2 11.6 16.5 22.7 .54
Combined 186 1.0 3.0 5.9 10.3 15.1 .81 2.7 4.3 7.3 14.4 16.5 .69

von Economo–Koskinas Thickness 86 2.4 3.8 8.2 13.6 21.5 .65 3.6 7.4 11.0 18.9 22.2 .49
Gyrification 86 1.6 4.0 7.2 18.2 23.8 .58 3.0 5.6 9.6 16.5 22.4 .52
FD 86 1.4 4.0 7.7 12.6 18.6 .76 2.3 4.6 9.2 16.3 21.4 .59
Combined 258 1.3 2.6 5.7 10.0 12.8 .85 1.6 3.6 8.5 12.0 14.4 .76

Destrieux Thickness 148 1.4 4.0 8.2 12.3 19.7 .71 1.1 2.9 8.5 16.2 23.9 .52
Gyrification 148 1.7 4.0 9.9 17.0 21.5 .61 2.9 4.9 10.8 14.9 22.2 .49

Brainnetome Thickness 210 1.5 3.1 7.9 13.6 19.7 .68 1.5 6.4 9.9 16.3 21.4 .57
Lausanne Thickness 1000 0.7 2.9 8.4 12.8 18.5 .73 1.4 5.5 9.9 13.6 18.5 .67
Thickness (Brainnetome) + FD (Lobe) 214 1.0 2.7 6.1 9.8 17.0 .80 1.3 2.9 7.5 13.2 18.8 .72

Median and R2 values for the best-fitting model are shown in bold.
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generally yielded better age predictions, demonstrating that regional
heterogeneity in age-related differences in cortical thickness led to
improved prediction performance. Age prediction models using the
cortical ribbon and lobe parcellations performed comparably, indi-
cating that the slight increase in heterogeneity with the lobe parcel-
lations was not sufficient to improve predictions. However,
performance on the atlases that had more fine-grain parcellations led
to a decrease in the median absolute error of approximately 3 years.
Performance between these different atlases did not markedly differ,
with age predictions having a median error of 7–10 years. While
performance with the Lausanne atlas (which comprised 1000
regions) was relatively good, it was not better than the parcellation
atlases that had far fewer regions. Here, we considered the Brain-
netome atlas to be the best performing model based on cortical
thickness estimates.

Comparing different measures of morphology

Next, we compared age prediction models based on cortical thick-
ness, gyrification and fractal dimensionality. As indicated earlier,
fractal dimensionality inherently becomes less sensitive with smaller

parcellations and was only used for the cortical parcellations with
< 100 regions.
Beginning with models using only a single value for the unpar-

cellated cortical ribbon, the model based on the fractal dimension-
ality did markedly better than those based on mean cortical
thickness or gyrification. Combining the three measures (i.e., three
predictors in the regression) led to worse age predictions than
complexity alone, due to insufficient feature selection and/or pos-
sible over-fitting. Given that there were only three predictors
input, this suggests that the automatic relevance determination
used in RVR was not ‘strict’ enough to only use complexity,
although later combined models were able to perform better than
their component models that relied on only a single measure of
morphology. The age prediction models using the lobe-wise par-
cellation scheme performed relatively similarly to those that only
used the cortical ribbon.
The models that used the DKT parcellation atlas using only one

of the morphology measures performed comparably to those with
the unparcellated ribbon and lobe parcellations; however, the com-
bined model here did perform notably better. The combined model
had a median error of 8 years and R2 values near .70. As noted ear-
lier, age predictions based on cortical thickness improved markedly
when using the DKT parcellation, relative to the ribbon and lobe
parcellations. Importantly, we also found that the fractal dimension-
ality model using the DKT parcellation was performing worse than
the ribbon and lobe models, suggesting that using the finer-grain
parcellations was resulting to notable losses in complexity-related
information, as alluded to previously. Interestingly, the age predic-
tion models based on the von Economo–Koskinas atlas performed
comparably with the DKT atlas when each structural metric was
used independently, but error was sufficiently lower when the met-
rics were combined.

Combining measures

The four combined models are shown in orange in Fig. 7. Based on
the performance of these age prediction models, we constructed an
additional model, combining the two best cortical measures, across
different parcellation approaches—cortical thickness from the
regions of the Brainnetome parcellation atlas, and fractal dimension-
ality from the lobe-wise parcellation. This newly constructed model
(shown in light green) out-performed the component models, indi-
cating that the two structural measures each provided unique age-
related difference characteristics. A scatter plot of the predicted and
actual ages for this model is shown in Fig. 8.

Discussion

The present study reveals that interindividual differences in cortical
structure are not only strongly correlated with age, but also can
robustly be used to predict age. Although almost any metric of corti-
cal structure can predict age to within a decade (10–12 years), the
present study also reveals that by optimizing metrics, a much more
accurate prediction (6–7 years) can be achieved. In-line with prior
results (Hogstrom et al., 2013; Madan & Kensinger, 2016), we
found that differences in gyrification are not as related to age as cor-
tical thickness, and fractal dimensionality was a better morphologi-
cal metric of age-related differences than either of these other
metrics. Importantly, the best age predictions were achieved when
both fractal dimensionality and cortical thickness were combined,
demonstrating that these metrics contribute unique information about
age-related differences in brain structure.

Fig. 6. Regional age-prediction differences (R2) using the (A) DKT, (B)
von Economo-Koskinas atlases, and (C) Brainnetome for the respective struc-
tural measures using smoothing-spline regression. [Colour figure can be
viewed at wileyonlinelibrary.com].
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Across different cortical parcellation schemes, cortical thickness
estimates localized to different gyri and sulci are substantially more
indicative of age-related differences relative to lobe-wise measure-
ment. The recently developed Brainnetome atlas was selected as the
best atlas for representing age-related differences in cortical thick-
ness, although the DKT, Destrieux and von Economo–Koskinas
atlases did not markedly differ in performance. Parcellating the cor-
tex into even more constrained patches (i.e., the Lausanne atlas) did

not provide any additional predictive value, indicating that the level
morphological granularity in the Brainnetome parcellation was suffi-
cient for age predictions based on cortical thickness estimates. Frac-
tal dimensionality inherently becomes less sensitive with smaller
parcellations and performed best when only using lobe-wise parcel-
lations, rather than the more fine-grained parcellations of the DKT
and von Economo–Koskinas atlases. Gyrification did not appear to
be sufficiently predictive of age to further contribute to predictions.

Fig. 7. Age-prediction performance for the models based on each of parcellation atlases and structural measures. ‘Regions’ corresponds to the number of
regions/predictors used in the model (see Figure 1). ‘FD’ denotes fractal dimensionality of the filled structures. Each box-andwhisker bar denotes the median
(i.e., MdAE) as a tick-mark. The box spans the 25th to 75th percentiles; the whiskers span the 10th to 90th percentiles. Values for each of these percentiles, as
well as R2, are reported in Table 1. [Colour figure can be viewed at wileyonlinelibrary.com].
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Without pooling across different atlases, the von Economo–Koskinas
atlas produced relatively good age predictions when the three corti-
cal metrics were combined.
Within the broader literature, the age prediction approach here

can serve as a baseline model of healthy, successful aging. For
instance, this approach can be used to characterize which regions
exhibit more or less age-related variability. As the training and test
datasets were wholly independent, age predictions applied to addi-
tional independent datasets should be indicative of healthy aging.
Future studies could use the current approach with smaller samples,
where larger differences between predicted age and chronological
age would be indicative of cohort characteristics related to atypical
aging. Of course, it would still be optimal to have MRI data for
‘healthy’ individuals acquired alongside the group of interest to
account for differences related to scanner hardware, pulse sequence
or potential differences in demographics (e.g., years of education).
Although the present results reveal systematic age-related differ-

ences in brain structure, several questions remain about the nature
of these age differences. For instance, the cortical measures used
here are limited to macroscopic differences, as differences in the
microstructure (e.g., neuron density, neuropil composition) are
beyond the capabilities of current MRI methods. This raises the
question of what neurobiological changes are manifesting in these
macroscopic changes in structure. In a different vein, in models
where age predictions performed relatively poorer, and in light of
the myriad of ways that individual brains can differ, one must won-
der what other non-aging factors may be manifesting in morphologi-
cal differences and minimizing the ability to isolate age differences.
In the following two sections, we outline the extant literature that
investigates these two topics.

Neurobiological basis of age-related differences in brain
structure

While a large number of studies examining age-related differences in
cortical thickness have found reduced cortical thickness in older
adults, particularly in frontal regions, the underlying changes in the
cortical microstructure are unclear (Sowell et al., 2003; Koo et al.,
2012; Dickstein et al., 2013; Meyer et al., 2014). One reason this has
yet to be resolved is that to do so appropriately would require not only
MRI data but also postmortem histological tissue samples. Extant his-
tological evidence suggests that age-related differences in cortical

regions are generally not associated with a decrease in the number or
size of neurons (Morrison & Hof, 1997; Peters et al., 1998; Uylings
& de Brabander, 2002; Peters & Rosene, 2003; Freeman et al., 2008;
Gefen et al., 2015; von Bartheld, 2017), despite initial suggestions to
the contrary (Terry et al., 1987). What does appear to differ, however,
is the dendritic structure, particularly in pyramidal neurons, as well as
other features of the neuropil (Scheibel et al., 1975; Peters, 2002;
Uylings & de Brabander, 2002; Duan et al., 2003; Eickhoff et al.,
2005; Dickstein et al., 2007, 2013; Hao et al., 2007; Casanova et al.,
2011; Morrison & Baxter, 2012). Convergently, pyramidal neurons
are particularly prominent in prefrontal cortex, as well as prefrontal
pyramidal neurons having orders of magnitude more dendritic spines
than those in some other regions (Elston, 2003).
The literature investigating the biological basis for age-related dif-

ferences in gyrification is even more sparse. Unlike cortical thick-
ness, age-related differences in gyrification are most pronounced in
the parietal lobe (Hogstrom et al., 2013; Madan & Kensinger,
2016). In a large sample of chimpanzees, Autrey et al. (2014)
observed increased gyrification in adults relative to adolescents, con-
sistent with human data; however, an age-related decrease in gyrifi-
cation was not observed. The authors thus attributed the age-related
decrease in gyrification in humans as a being related to the extended
lifespan of humans, although many other factors also may be rele-
vant (e.g., exercise and diet).

Non-aging factors that influence brain morphology

While the goal of the current work was to examine the relationship
between age and brain morphology, a multitude of other factors is
also known to influence estimates of brain morphology. Broadly,
these other factors can be categorized as follows: (1) interindividual
differences; (2) transient physiological changes; and (3) scan-related
factors, as outlined in Fig. 3. Here, we only included age as a pre-
dictor and did not include these additional factors, and thus, predic-
tion accuracy was inherently limited; however, future work
including some of these factors should yield more precise predic-
tions. Furthermore, an important next step will be to examine the
relative contribution of different interindividual difference measures
to age prediction performance.
Interindividual differences in morphology can arise from many

sources, including biological and lifestyle/experiential factors. It is

Fig. 8. Scatter plot of the actual and predicted age for the best-fitting model. [Colour figure can be viewed at wileyonlinelibrary.com].
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well established that there are sex differences in brain morphology
(Barnes et al., 2010; Herron et al., 2015; Hutton et al., 2009;
McKay et al., 2014; Potvin et al., 2016; Salat et al., 2004; Sowell
et al., 2007). Brain morphology has also been linked with genetic
variations; even in healthy individuals, genetic variants of APOE
(Donix et al., 2010; Honea et al., 2010; Okonkwo et al., 2012;
Reinvang et al., 2013; Mormino et al., 2014; Riedel et al., 2016)
and BDNF (Nemoto et al., 2006; Pezawas et al., 2004; but see Har-
risberger et al., 2014) relate to brain morphology estimates. Factors
related to perinatal development such as birth weight and nutrition
are also associated with morphology, during development and
through to adulthood (Walhovd et al., 2012, 2014, 2016; Strømmen
et al., 2015). Other lifestyle and experiential factors also can influ-
ence brain morphology. Expertise within specific domains has been
associated with regional differences in morphology (see May, 2011;
for a review), such as in chess players (H€anggi et al., 2014), taxi
drivers (Maguire et al., 2000), musicians (Tervaniemi, 2009), ath-
letes (Tseng et al., 2013; Schlaffke et al., 2014) and video game
players (Erickson et al., 2010; K€uhn et al., 2013). Morphological
changes can also arise from experiences such as meditation (Tang
et al., 2015; Luders et al., 2016) or from a lack of normal experi-
ence, as in acquired blindness (Li et al., 2017). Other important
interindividual factors lay somewhere on a continuum in-between
biological and lifestyle. Physical health factors, such as exercise and
diet, can also influence brain morphology (Hayes et al., 2014; Booth
et al., 2015; Khan et al., 2015; Fletcher et al., 2016; Kullmann
et al., 2016; Steffener et al., 2016; Williams et al., 2017). Interindi-
vidual differences such as cognitive abilities, personality and affec-
tive style are also associated with morphological differences
(Bjørnebekk et al., 2013; Kievit et al., 2014; Holmes et al., 2016;
Yamagishi et al., 2016; Gignac & Bates, 2017; Riccelli et al., 2017;
Valk et al., 2017). A growing literature has also demonstrated rela-
tionships between socioeconomic status and brain morphology (Han-
son et al., 2013; Brito & Noble, 2014; Piccolo et al., 2016; Brito
et al., 2017; LeWinn et al., 2017).
Beyond interindividual differences in morphology, transient physi-

ological effects can also influence estimates of brain morphology
and likely also estimates of test–retest reliability. These changes
include time-of-day effects (Nakamura et al., 2015; Trefler et al.,
2016) and structural changes over the course of longer periods (i.e.,
infradian), such as the menstrual cycle (Hagemann et al., 2011; Pro-
topopescu et al., 2008; Ossewaarde et al., 2013; Lisofsky et al.,
2015). Hydration can also influence brain morphometry (Duning
et al., 2005; Kempton et al., 2009; Nakamura et al., 2014; Stre-
itb€urger et al., 2012; but see Meyers et al., 2016).
Scan-related effects can affect estimates of morphology, without

an actual change in morphology. For instance, head movement dur-
ing scan acquisition can lead to decreased estimates of cortical
thickness (Reuter et al., 2015; Alexander-Bloch et al., 2016; Pardoe
et al., 2016; Savalia et al., 2017). Effects of head movement on
morphology estimates are particularly relevant here, as there is evi-
dence that older adults tend to move more during scanning than
younger adults (Andrews-Hanna et al., 2007; Van Dijk et al., 2012;
Salat, 2014; Savalia et al., 2017; but see preliminary evidence that
fractal dimensionality may be robust to head movement, Madan &
Kensinger, 2016). Differences in pulse sequence, magnetic field
strength and other interscanner effects can also influence estimates
of morphology (Han et al., 2006; Jovicich et al., 2009, 2013; Won-
derlick et al., 2009; L€usebrink et al., 2013; Iscan et al., 2015; Pot-
vin et al., 2016; Madan & Kensinger, 2017b; Erus et al., 2018;
Fortin et al., 2018; Zaretskaya et al., 2018), as well as software

packages, and even versions, used for data analysis (Chepkoeck
et al., 2016; Glatard et al., 2015; Gronenschild et al., 2012; Johnson
et al., 2017).
In sum, estimates of brain morphology are subject to many

sources of variability that are often not considered, with future stud-
ies necessary to further our understanding of the complex interplay
among these factors.

Future directions

Prediction accuracy may be improved by extending it to multimodal
protocols. For instance, other imaging techniques have been found to
index age-related differences, such as iron content (Bartzokis et al.,
1994; Zecca et al., 2004; Callaghan et al., 2014; Ward et al., 2014;
Daugherty & Raz, 2015; Ghadery et al., 2015; Acosta-Cabronero
et al., 2016), white matter tract integrity (Gunning-Dixon et al., 2009;
Lebel et al., 2012; Chen et al., 2013; Teipel et al., 2014; Bender
et al., 2016; Cox et al., 2016; Kodiweera et al., 2016), and arterial-
spin labeling (Chen et al., 2013). Functional connectivity (e.g., from
resting-state fMRI data) could also be used to complement the current
approach (e.g., Dosenbach et al., 2010; Qin et al., 2015; Geerligs &
Tsvetanov, 2016; Liem et al., 2017). Other non-imaging measures,
such as lifestyle factors (e.g., diet, smoking, vascular health, education
and exercise) or blood biomarkers. may also improve prediction
accuracy (Geerligs & Tsvetanov, 2016; Madsen et al., 2016).
Future work can take advantage of this framework to compare rel-

ative differences in ‘brain age’ associated with different participant
samples, both healthy and patient populations. For instance, prior
studies have found evidence suggesting overestimated aging predic-
tions in patients with Alzheimer’s disease (Franke & Gaser, 2012),
traumatic brain injuries (Cole et al., 2015) and schizophrenia (Sch-
nack et al., 2016). Other individuals, such as long-term meditation
practitioners, have been found to have significantly underestimated
age predictions (Luders et al., 2016).

Conclusion

Here, we demonstrate that reliable age predictions can be made from
structural MRI volumes. A combination of cortical thickness and
fractal dimensionality yields the best predictions. The present frame-
work may also prove useful for future research contrasting healthy
aging relative to samples of participants exhibiting pathological
aging or superagers, as well as for investigating other sources of
variability within healthy older adults (such as cognition-, lifestyle-
or health-related factors).
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