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A B S T R A C T   

When people make risky decisions based on past experience, they must rely on memory. The nature of the 
memory representations that support these decisions is not yet well understood. A key question concerns the 
extent to which people recall specific past episodes or whether they have learned a more abstract rule from their 
past experience. To address this question, we examined the precision of the memories used in risky decisions- 
from-experience. In three pre-registered experiments, we presented people with risky options, where the out-
comes were drawn from continuous ranges (e.g., 100–190 or 500–590), and then assessed their memories for the 
outcomes experienced. In two preferential tasks, people were more risk seeking for high-value than low-value 
options, choosing as though they overweighted the outcomes from more extreme ranges. Moreover, in two 
preferential tasks and a parallel evaluation task, people were very poor at recalling the exact outcomes 
encountered, but rather confabulated outcomes that were consistent with the outcomes they had seen and were 
biased towards the more extreme ranges encountered. This common pattern suggests that the observed decision 
bias in the preferential task reflects a basic cognitive process to overweight extreme outcomes in memory. These 
results highlight the importance of the edges of the distribution in providing the encoding context for memory 
recall. They also suggest that episodic memory influences decision-making through gist memory and not through 
direct recall of specific instances.   

1. Introduction 

Many of our everyday choices regarding healthy lifestyles, climate 
action and personal finances are made on the basis of remembered in-
formation. For example, when deciding where to go for your weekly 
shop, you might draw on past experiences and prices at different stores. 
To make these decisions we must learn, from experience, the risk and 
reward associated with our actions. For example, people respond 
differently when presented with the potential risks and outcomes asso-
ciated with a decision (e.g., reading about medication side effects), 
compared to deciding based on experience (e.g., choosing the most 
effective painkiller for a headache). These experience-based decisions 
necessarily rely to some degree on memory, yet the nature of this rela-
tionship is not well understood (Rakow & Newell, 2010). In decision- 
making, such memories for past outcomes are known to be biased, 
with stronger memory for outcomes that are more extreme (Ludvig, 
Madan, McMillan, Xu, & Spetch, 2018; Madan, Ludvig, & Spetch, 2014), 

more salient (Tsetsos, Chater, & Usher, 2012), and more strongly 
preferred (Weilbächer, Kraemer, & Gluth, 2020). 

Here we examine the nature of the memory representations that 
develop during decision-making, evaluating whether people recall spe-
cific instances of past episodes or whether they learn a more abstract 
rule or heuristic from their past experiences. This point distinguishes 
between important models of choice that are predicated on either 
episodic/instance-based mechanisms (e.g., Bornstein, Khaw, Shohamy, 
& Daw, 2017; Gonzalez, Lerch, & Lebiere, 2003; Hotaling, Donkin, 
Jarvstad, & Newell, 2022) or based on abstract/gist representations 
(Brainerd, Reyna, & Mojardin, 1999; Nosofsky, 1988; e.g., Tversky & 
Kahneman, 1973). For example, when considering whether to take 
climate action, do people recall a specific record-breaking day of the 
summer or instead use the general rule that summers are getting hotter? 
If we are looking at ways of influencing people to take climate action, 
then whether their decision is influenced by memories of individual 
instances or a general gist impacts how best to potentially shift 
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behaviour (e.g., reminders of past episodes are likely to be less effective 
if decisions are based on the latter memory representations). 

In three experiments we directly test how people recall uncertain 
information and how these memory representations are related to 
decision-making. We examine the degree to which people recall specific 
values versus applying a rule-based approach to generate outcomes. We 
show that, when asked, people did not recall the exact outcomes 
encountered, but rather confabulated outcomes that aligned with their 
decision biases. 

1.1. Risky choice and memory 

When making risky decisions, people often make different decisions 
depending on whether they learn about the odds and outcomes through 
an explicit description or from their own experience. This description- 
experience gap has been attributed to a process of drawing samples 
from memory (Hertwig & Erev, 2009), which might only feature a small 
subset of past experiences (Plonsky, Teodorescu, & Erev, 2015) or can be 
explicitly biased (Madan, Ludvig, & Spetch, 2017). In previous work, 
using a risky-choice paradigm, we have consistently found that people 
overweight the extreme outcomes (highest and lowest in a context) in 
memory (Madan et al., 2014; Madan, Spetch, Machado, Mason, & 
Ludvig, 2021). This overweighting in memory leads to people being 
more risk-seeking for choices that involve the high extreme and less risk- 
seeking for choices that involve the low extreme. In these experience- 
based situations, people are more risk-seeking for relative gains than 
relative losses (Konstantinidis, Taylor, & Newell, 2018; Madan et al., 
2014), showing the opposite pattern to the standard reflection effect in 
decisions-from-description (Kahneman & Tversky, 1979). For example, 
in experience, people choose a 50/50 chance of winning 90 or 50 over a 
certain 70, but choose a certain 30 over a 50/50 chance of winning 50 or 
10 points, where 90 is the high extreme and 10 is the low extreme. 
Recent models of decision-making have modeled this pattern by 
weighting the probability of including an outcome in a memory sample 
as a function of how close to the edges of the distribution the outcome 
falls (Lieder, Griffiths, & Hsu, 2018; Ludvig et al., 2018; Vanunu, 
Hotaling, & Newell, 2020). This overweighting parallels findings in the 
memory literature that the best and worst information is better encoded, 
in the context of both reward outcomes and emotional valence (Madan, 
2017; Mason, Farrell, Howard-Jones, & Ludwig, 2017). Similarly, the 
peak-end rule describes how in a range of decision contexts, people tend 
to overweight the most intense and the most recent events in their 
overall evaluation of an experience (Redelmeier & Kahneman, 1996). 

Thus far, studies examining the relationship between memory for 
extreme outcomes and risky choice have shown that after completing a 
risky-choice task participants have better memory for the most extreme 
outcomes (highest and lowest) in a decision context (Ludvig et al., 2018; 
Ludvig, Madan, & Spetch, 2014). The small outcome set typically used in 
decision-from-experience tasks has limited the data that can be collected 
after the decision-making task and therefore used to examine the rela-
tionship. These tasks typically include a limited set of outcomes (usually 
3–6 different reward outcomes total), making the memory demands 
relatively low (Hertwig & Erev, 2009; Ludvig et al., 2018; Madan et al., 
2014, 2021; Wulff, Mergenthaler-Canseco, & Hertwig, 2018). In previ-
ous experiments, we have used two key memory measures: frequency 
judgments and first-outcome reported. The frequency judgment presents 
participants with each of the risky options and outcomes and asks them 
to state what percentage of the time they saw each of the outcomes. 
Participants systematically overestimate the frequency of the extreme 
outcomes (highest and lowest experienced). In the first-outcome- 
reported test participants are presented with the risky options and 
asked to state the outcome that they most readily associate with that 
option. Once again, participants are more likely to report the extreme 
outcomes (Madan et al., 2014; Madan, Ludvig, & Spetch, 2019). Neither 
of these measures allow the examination of the precision of the memory 
representations involved. In the current experiments, each payoff is 

associated with a distribution of outcomes, meaning that we can collect 
free-recall data for each of the options. Other decision-making tasks 
have included a greater range of reward outcomes but have not exam-
ined memory effects (Kunar, Watson, Tsetsos, & Chater, 2017; Tsetsos 
et al., 2012; Vanunu et al., 2020). It is worth noting that Spektor, Gluth, 
Fontanesi, and Rieskamp (2019) used a decisions-from-experience 
paradigm with continuous outcomes and asked participants for esti-
mates of the average probability and magnitude of each option but did 
not ask participants to recall individual items. They found that partici-
pants' estimates of probability and magnitude did not correlate with how 
often they chose the options. 

1.2. Specificity vs generality of memory in risky choice 

Dual-route memory models suggest that memory traces exist at two 
levels, such as verbatim and gist (Brainerd et al., 1999), item-specific 
and relational (Hunt & Mitchell, 1982), and form or content-based 
(Steyvers & Griffiths, 2008). The verbatim, item-specific or form-based 
representation is close to the raw form of the item and involves pro-
cessing individual features of the item. The gist, relational or content- 
based level involves processing shared features of items and is a high-
ly abstracted representation of the past. 

In prominent models of memory and decision-making the samples 
used to predict an upcoming choice represent distinct episodes of past 
experience and are more aligned with the item-specific representation 
outlined above (Gonzalez et al., 2003). For example, MINERVA-DM 
relies on a “database” of memories that are degraded representations 
of experienced events (e.g., due to lack of attention at encoding) 
(Dougherty, Gettys, & Ogden, 1999), whereas Decision-by-Sampling 
(DbS) (Stewart, Chater, & Brown, 2006) assumes that the contents of 
memory reflect the structure of the world (Chater & Brown, 1999; 
Stewart, 2009). Exemplar models assume that each item is stored in a 
unique memory trace (Nosofsky, 1988) and have been used to predict 
choice in decisions-from-experience paradigms (Hotaling, Donkin, 
Jarvstad, & Newell, 2022). Whilst such models are able to accurately 
account for choice patterns, data that would shed light on people's 
memory representations is not routinely collected. 

This instance-based sampling approach has also gained traction in 
reinforcement learning in cases where the extensive experience required 
by reinforcement learning is not available (e.g., Lengyel & Dayan, 
2007). Standard incremental reinforcement learning models do not 
maintain a memory of individual outcomes/events (Sutton & Barto, 
1998). In contrast, the episodic reinforcement-learning models include a 
record of individual trials that can be used to enhance the incremental- 
learning system (Gershman & Daw, 2017). These models are able to 
readily accommodate the experimental finding that priming participants 
with either previous wins or losses can shift choice (Bornstein et al., 
2017; Gibson & Zielaskowski, 2013; Ludvig, Madan, & Spetch, 2015). 
Whilst Bornstein et al. (2017) showed a strong influence of past in-
stances on future choices, they did not directly test memory for items or 
examine the possibility that categorically related primes would produce 
the same impact on future choices. Murty, FeldmanHall, Hunter, Phelps, 
and Davachi (2016) found evidence that decision-making was linked to 
memory for specific item-reward associations. Critically, in their 
experiment when they tested participants' memory for reward outcomes 
recalled within a $1 range of the correct item were scored as correct. So 
although this study is often cited as evidence of contextually detailed 
episodic memory predicting choice, the specificity of the memory is not 
known. 

In contrast, rule-based strategies assume the decision-maker learns 
the underlying function/distribution of the items by abstracting 
knowledge from the environment, for example by determining how 
much a cue or feature relates to the decision criterion (DeLosh, Buse-
meyer, & McDaniel, 1997). Rule-based and exemplar models have been 
tested and pitted against each other extensively in the categorisation and 
judgment literature (Hoffmann, von Helversen, & Rieskamp, 2014; 
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Juslin, Olsson, & Olsson, 2003; Pachur & Olsson, 2012). For example, 
individual differences in rule-based or exemplar strategies have been 
linked to memory: a reliance on exemplar-based strategies may be 
linked to episodic memory abilities, whereas reliance on rule-based 
strategies may be related to working memory capacity (Hoffmann, 
Von Helversen, & Rieskamp, 2016; Juslin, Karlsson, & Olsson, 2008). A 
more combined approach is reflected in a Bayesian model of recon-
structive memory (Hemmer & Steyvers, 2009), in which memory errors 
can be explained by using prior knowledge at the category level to help 
the recall of instance-specific attributes. 

1.3. Current experiments 

Our three experiments were designed to extend our understanding of 
the relationship between memory for outcomes and risky decisions from 
experience. By using continuous outcomes and instance-based memory 
measures, the experiments aimed to shed light on the trade-off between 
specificity and generality in memory. In particular, by analyzing the 
errors made during memory recall and value estimation, we asked to 
what extent people develop veridical memories versus distorted ones, 
and whether the pattern of errors suggests confabulation based on 
category knowledge. By conducting the same memory tests after making 
preferential choices (Experiments 1a and 1b) or after experiencing the 
outcomes without making any choices (Experiment 2), we aimed to also 
shed light on the correlation between memory and risky choice. Spe-
cifically, we asked whether people would still show the same pattern of 
memory results when they have not made any preferential decisions. 

Experiments 1a and 1b use a decisions-from-experience task (Ludvig 
et al., 2014) where participants choose between pairs of risky and safe 
coloured doors, which lead to different reward outcomes. In addition, 
trials are either high value or low value, which allows us to examine 
risky choice for relative gains and losses. In the current experiments, we 
introduce continuous outcomes for the reward values (Olschewski, 
Dietsch, & Ludvig, 2019). The outcomes are uniformly sampled from a 
range of possible outcomes (+/− 45 of the mean value); Table 1 details 
the exact ranges. For example, in Experiment 1a, for a low-value safe 
outcome where the mean is 345, the outcome shown ranges from 300 to 
390. For the low-value risky option there is a 50:50 chance that the 
outcome is sampled from either a lower range (100–190) or a higher 
range (500–590). Experiment 1b uses similar ranges, but with non- 
overlapping values. At the end of the choice phase, participants were 
asked to recall as many outcomes associated with each option as they 
could. They were also asked to state the average value of the door. If 
people are retrieving specific instances they should accurately recall 
(some of) the reward outcomes. If instead they have learned the distri-
bution and are subsequently generating outcomes from that distribution, 
they may confabulate and recall numbers they have not actually 
encountered but that fall within the experienced range. 

The extreme-outcome effect has typically been observed in prefer-
ential choice tasks (Konstantinidis, Taylor, & Newell, 2018; Ludvig 
et al., 2018, 2014). One way to assess the degree to which this choice 

bias reflects a parallel memory bias is to assess whether the effects still 
occur in the absence of a preferential choice task. To answer this ques-
tion, we conducted an additional experiment where participants did not 
directly choose between the risky and safe options. Instead, they were 
shown a single option (high or low value, risky or safe) on each trial and 
presented with the same ranges of outcomes as in the first experiment. 
Once they experienced all options and outcomes we conducted the same 
memory and estimation tasks. 

For each of the experiments we pre-registered a series of experi-
mental hypotheses. For Experiments 1a and 1b where the task included 
choice, we tested the Overweighting-in-Choice hypothesis, which states 
that people will overweight the extreme outcomes in choice. For 
example, in Experiment 1a both the high- and the low-value risky op-
tions led to a 50% chance of an outcome in the 500–590 range. The high- 
value option also led with a 50% chance to outcomes in the 900–990 
range (the highest possible range). In contrast the low-value risky option 
also led with a 50% chance to outcomes in the 100–190 range (the 
lowest possible range). If people overweight the values at the extreme 
ends (i.e., the 100 s and the 900 s), then they will be more risk-seeking 
for the high-value choices when the highest range (900 s) will be 
overweighted than for the lower-value choices when the lowest range 
(100 s) will be overweighted 

Across all experiments, we tested two hypotheses related to memory 
and estimation. The Memory-Overweighting hypothesis states that people 
will overweight the extreme outcomes in memory and will be more 
likely to recall outcomes from the more extreme range. The Estimation- 
Overweighting hypothesis states that people will judge the average value 
of the high-value risky option to be higher and the low-value risky op-
tion to be lower if they are overweighting the extremes. For Experiment 
2, we additionally tested the Preferential-Overweighting hypothesis which 
states that without a preference task, extreme outcomes will be no more 
likely to be recalled, nor to influence estimation. 

2. Method 

Data files, pre-registration documents and materials can be found on 
the Open Science Framework (https://osf.io/2ey8m/). 

For all experiments, participants were recruited via Prolific Aca-
demic to participate in the experiment online. To be eligible to take part 
in the experiments participants needed to be aged 18–65, have English 
as their first language (self-reported), and have a Prolific Academic 
approval rating of over 90%. For all experiments, the target sample size 
was 102, which, with a frequentist approach, would have given 95% 
power for a one-tailed t-test with a small-medium effect size (Cohen's d 
= 0.4) and an alpha of 0.01. As per the pre-registered sampling plan, we 
aimed to recruit 120 participants for each experiment to allow for 
incomplete data sets and dropout during the experiment. 

For Experiment 1a, 123 participants signed up via Prolific Academic 
before the experiment closed (age range 19–57, M = 30.0, SD = 10.2; 54 
female, 69 male). According to the pre-registered exclusion criteria, 21 
were excluded for scoring less than 60% correct on the catch trials. The 
final sample size was 102. Participants were paid £4 for completing the 
40-min session and could earn an additional bonus of £1 for every 
20,000 points up to a maximum bonus of £7. Participants were told the 
conversion rate after they had completed the task. Participants earnt 
between 111,773 and 149,253 points (mean = 140,387). Due to an error 
in recording the Prolific IDs, all participants were paid the maximum 
bonus of £7. 

In Experiment 1b, 123 participants completed the experiment (age 
range 18–54, M = 25.2, SD = 7.7; 50 female, 70 male, 3 undisclosed), 
but 1 participant was excluded as they did not have data on the server. 
According to the pre-registered exclusion criteria, 18 were excluded for 
scoring less than 60% correct on the catch trials. The final sample size 
was 104. The payment structure was identical to Experiment 1a. Par-
ticipants earnt between 91,468 and 123,645 points (mean = 117,068), 
and the mean bonus payment was £5.85. 

Table 1 
Safe and risky door options for each experiment.  

Value Option Range Expected value 

Experiment 1a and Experiment 2 
Low Safe 300–390 345 
Low Risky (p = .5) 100–190 or 500–590 145 or 545 
High Safe 700–790 745 
High Risky (p = .5) 500–590 or 900–990 545 or 945  

Experiment 1b 
Low Safe 200–290 245 
Low Risky (p = .5) 100–190 or 300–390 145 or 345 
High Safe 600–690 645 
High Risky (p = .5) 500–590 or 700–790 545 or 745  
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For Experiment 2, 120 participants completed the experiment (age 
range 19–65, M = 32.6, SD = 11.0; 57 female, 62 male, 1 undisclosed), 
and three participants were excluded as they did not have data on the 
server. The final sample size was 117 complete datasets. This experiment 
did not involve a choice component and therefore there were no ex-
clusions based on catch trials. Participants were paid £2 for completing 
the 20-min session. 

2.1. Procedure 

The procedure followed the protocols published in Ludvig et al. 
(2014). The choice options and two tasks are shown in Fig. 1. There were 
5 blocks of 48 trials. Between blocks participants were given a 15-s 
break. 

Table 1 lists the details for the 4 choice options (doors) available in 
the task: low-value safe, low-value risky, high-value safe and high-value 
risky. Experiments 1a and 1b were preferential choice tasks, and on each 
trial, up to 2 options appeared on either side of the screen as pictures of 
different-coloured doors. Participants started with zero points and 
selected a door by clicking with their mouse. After the selection, a nu-
merical outcome (i.e., reward amount) drawn from the corresponding 
range(s) appeared for 1.2 s. Trials were self-paced, and, after each trial, 
participants pressed a button at the centre of the screen to re-centre the 
mouse and move on to the next trial. The outcomes were uniformly 
sampled from a range of outcomes +/− 45 of the mean value. The exact 
mean number, however, was never shown. A random number from the 
range (180 numbers for the risky doors and 90 numbers for the safe 
door) was shown each time the option was selected. For example, in Exp 
1a and 2, for the low-value safe option where the mean was 345 the 
outcome shown ranged from 300 to 390, and 345 never appeared. For 
the risky options, a number was drawn equiprobably from one of the two 
possible ranges associated with that option. For example, for the high- 
value risky option, the number displayed was either drawn from the 
range 500–590 or from the range 900–990. 

In Experiments 1a and 1b, in each block, there were three types of 
trials. On 24 Choice trials, participants selected between safe and risky 
options of equal expected values (low or high). On 8 Single-Option trials, 
only one door was presented, and participants needed to select that 
option to continue. These trials ensured that all options and outcomes 
were experienced on occasion independent of preference. On 16 Catch 
trials, participants selected between a high-value option and a low-value 
option (either both risky or both safe). These trials allowed us to detect 
inattentive participants or those who were not motivated to get higher 
expected values, irrespective of risk preference. As pre-registered, par-
ticipants who selected the high-value option less than 60% of the time on 
these trials were excluded from the data analyses reported below. 

In Experiment 2, participants were told that they were going to 
complete a task to learn how much cash people living in a 

neighbourhood keep at home. On each trial, only one door appeared at a 
time. Participants were told that when a door appeared on screen they 
should click on it and the number shown represented how much money 
(in pence) a person in that neighbourhood had in their house. Partici-
pants were told that at the end of the experiment they would be asked 
some questions about the neighbourhood, but the exact questions were 
not specified. In Experiment 2, there were 48 Single-Option trials in each 
of the 5 blocks and participants saw an equal number of high-value and 
low-value doors and safe and risky doors (each door was shown 12 times 
each per block). 

In all experiments, at the end of this task, participants were shown 
each of the 4 doors one at a time in a randomised order. They were asked 
to type as many outcomes as they could recall for each door within two 
minutes. They were then shown each door again and asked to type what 
they thought the average value of that door was. They had 30 s to type 
their answers. 

2.2. Data analysis 

The inferential framework used was Bayesian statistics. We used R to 
run the analysis (R Core Team, 2020) and the BayesFactor package to 
estimate Bayes Factors. For t-tests, the analyses used an uninformative 
Jeffrey's prior on the variance and a standard Cauchy prior of 

̅̅̅
2

√
/2 on 

the r scale value. For a detailed discussion on prior selection, see Rouder, 
Morey, Verhagen, Province, and Wagenmakers (2016). 

The value of the Bayes factors quantifies the strength of evidence in 
favour of one model with respect to another, given the data obtained. 
This value indicates how much prior beliefs should shift in response to 
the data obtained. Although there are no strict cut-offs, we apply the 
verbal labels used by Kass and Raftery (1995) to describe the results. 
Although not in our pre-registered plan, for ease of interpretation, we 
also report the equivalent frequentist statistics. In all cases, the primary 
analysis followed the pre-registered plan; any deviations or exploratory 
analyses are clearly marked below. 

For the memory test, participants could only be included if they 
recalled at least one item for each cell in the corresponding analysis. For 
Experiments 1b and 2, we pre-registered an additional criterion that 
participants who recalled values or gave estimates outside of the 
experimental range with a small buffer (i.e., less than 90 or more than 
1000) would be excluded, and we applied this criteria to all 
experiments. 

3. Results 

3.1. Risky choice 

The Overweighting-in-Choice hypothesis stated that, in Experiment 1a 

Fig. 1. A) Choice options with outcomes and probabilities across the experiment (not shown to participants). B) The trial structure for Experiments 1a, 1b and 2. In 
Experiments 1a and 1b participants were asked to choose between two doors and to maximise the points they earned. In Experiment 2, participants were told to click 
on each door and to observe the outcomes, which were said to represent how much cash (in pence) a person had in their home. 
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and 1b where people made preferential risky choices, they would 
overweight the extreme outcomes in choice. As a result, they would be 
more risk-seeking when deciding between high-value options as 
compared to when deciding between low-value options. We tested this 
hypothesis with a Bayesian t-test comparing risky choice in the high- and 
low-value decisions averaged over the last three blocks of the experi-
ment. Fig. 2 shows how in Experiment 1a people were 24.9 ± 6.9% [M 
± 95%CI] more risk seeking for the high- compared to the low-value 
decisions and in Experiment 1b they were 22.9 ± 6.8% more risk 
seeking for the high- compared to the low-value decisions. The Bayes 
Factors indicate very strong evidence in favour of this difference 
(Experiment 1a: BF = 7.58e+06, [t(101) = 7.13, p < .001, d = 0.89]; 
Experiment 1b: BF = 3.78e+06, [t(103) = 6.58, p < .001, d = 0.86]), in 
line with previous results on the impact of extreme outcomes in 
decisions-from-experience (Ludvig et al., 2018; Madan et al., 2014). 

3.2. Memory 

3.2.1. Recall accuracy 
Initially in line with the pre-registration for Experiment 1a we 

examined people's correct recall for each of the outcomes. We calculated 
the proportion recalled with reference to the total number of outcomes 
recalled, as opposed to the number of outcomes observed. As is shown in 
Fig. 3, overall participants had very poor recall of the exact outcomes 
they saw. In Experiment 1a, of all the outcomes recalled, only 3.27 ±
0.44% [M ± 95%CI] were among the received outcomes. In Experiment 
1b, 3.41 ± 0.45% of recalls were received outcomes. Overall recall was 
slightly higher in Experiment 2, and 5.13 ± 1.00% of participants' 
recalled outcomes were among the actually received outcomes. 

We therefore examined participants' consistent recalls. These are 
recalled outcomes that are within the correct range(s) for the door 
shown, but did not have to be the exact numbers that the participants 
saw. Fig. 3 plots the consistent recalls for each of the conditions and 
experiments. If we examine recalls in terms of whether or not they are in 
the correct category then the proportion of outcomes recalled was 
considerably higher, with 72.6 ± 5.0% of recalls being consistent in 
Experiment 1a, 63.4 ± 5.0% in Experiment 1b and 65.0 ± 6.0% in 
Experiment 2. 

Given that participants had very low precise recall we used the 
consistent recalls as the alternate basis for our pre-registered analyses in 
Experiment 1a and pre-registered the consistent-recalls analysis for 
Experiments 1b and 2. 

Fig. 4 shows the general pattern of consistent recalls was very similar 
across all experiments. For the low-value risky door, participants 
recalled more outcomes from the extreme range compared to the non- 
extreme (Experiment 1a: 50.2 ± 10.3%; Experiment 1b: 25.2 ± 6.9%; 
Experiment 2: 29.2 ± 10.2%). For the high-value risky door, partici-
pants also recalled more outcomes from the extreme range compared to 
the non-extreme (Experiment 1a: 24.0 ± 11.3%; Experiment 1b: 12.7 ±
6.8%; Experiment 2: 20.3 ± 9.5%). There was very strong evidence in all 
cases that people recalled more outcomes from the extreme ranges 
(Experiment 1a: BFLow= 2.59e+20, [t(90) = 9.54, p < .001, d = 1.00], 
BFHigh= 25,548, [t(92) =4.17, p < .001, d = 0.43]; Experiment 1b: 
BFLow= 1.47e+05, [t(89) = 5.86, p < .001, d = 0.62], BFHigh= 31.3, [t 
(92) = 7.80, p < .001, d = 0.36]; Experiment 2: BFLow= 5.18e+07, [t 
(105) = 5.62, p < .001, d= 0.55], BFHigh= 5800, [t(104) = 4.19, p <
.001, d = 0.41]). 

We conducted an exploratory analysis to examine whether there was 
a difference in recall of extreme items between low- and high-value 
options. In Experiment 1a there was strong evidence that people were 
recalling more extreme items for the low-value compared to the high- 
value options (BFDiff= 24.0, [t(90) = 2.61, p = .011, d = 0.35]. The 
results from Experiments 1b and 2 were less diagnostic. In Experiment 
1b, the evidence in favour of a difference was “not worth more than a 
bare mention” (BFDiff= 1.46, [t(85) = 2.08, p = .041, d = 0.22]). In 
Experiment 2, the evidence against a difference was also “not worth 

more than a bare mention” (BFDiff= 0.30, [t(99) = 1.25, p = .22, d =
0.12]). 

3.2.2. First recall 
Previous studies where each door was linked to a maximum of two 

outcomes have used the first outcome to come to mind as a measure of 
memory strength. Here we have multiple outcomes per option, which 
allows us to examine the probability that the outcomes from extreme 
ranges will be recalled first. Our prediction (the Memory-Overweighting 
hypothesis) was that numbers from the extreme ranges (Experiment 1a 
and 2: EV = 145 and 945; Experiment 1b: EV = 145 and 745) will be 
overweighted in memory and more likely to be reported when the risky 
doors are presented. 

As the recall patterns in Fig. 4 show, numbers from the extreme 
ranges were far more likely to be reported as the first outcome to come to 
mind. For each experiment a pair of Bayesian contingency tests were 
performed (one for the low-value risky door, and one for the high-value 
risky door). In all cases, there was very strong evidence that people re-
ported an extreme outcome more often (Experiment 1a: BFLow= 51,476 
[χ2 (1, N = 91) = 43.62, p < .001], BFHigh= 10,162 [χ2 (1, N = 93) =
37.43, p < .001]; Experiment 1b: BFLow= 64 [χ2 (1, N = 90) = 17.78, p <
.001], BFHigh= 37.57, [χ2 (1, N = 92) = 15.70, p < .001]; Experiment 2: 
BFLow= 2556, [χ2 (1, N = 101) = 32.17, p < .001], BFHigh= 5995, [χ2 (1, 
N = 104) = 28.04, p < .001]). 

3.2.3. Distribution of recalls 
To better follow up on how the recalled outcomes were distributed 

within a given range, we also examined the distribution of recalls. As 
observed with the recall counts (see Fig. 3), Fig. 5 shows how for the 
low-value risky doors the frequency of recalls was higher in the lower 
range (i.e., outcomes in the 100–190 range). For the high-value risky 
doors, there were more recalls in the higher range (Experiments 1a and 
2: 900–990 or Experiment 1b: 700–790). More revealingly, this figure 
shows how the distribution of outcomes within each range also trended 
towards the edges in some cases–this pattern is most notable for the low- 
value risky and low value safe option in Experiment 1a and Experiment 
1b and the high-value risky option in Experiment 2. The overall pattern 
confirms that participants generated items that fall at the edges of the 
distributions they experienced–both very starkly over the ranges from 
the whole experiment and also more mildly within several of the indi-
vidual experienced ranges. 

3.3. Estimations 

Our third hypothesis (the Estimation-Overweighting hypothesis) was 
that people's judgments of the value of the risky doors would be influ-
enced by overweighting of the extreme outcomes. Accordingly, the high- 
value risky door would be overestimated (as it might lead to a high 
extreme), and the low-value risky door would be underestimated (as it 
might lead to a low extreme). Fig. 6 shows participants' mean estimation 
of the risky doors, with respect to their estimate for the corresponding 
safe doors (i.e., by subtracting out the mean estimate for the safe door). 
As predicted, participants underestimated the value of the low-value 
risky door by − 95.9 ± 32.1 points in Experiment 1a, by − 42.4 ± 17.7 
points in Experiment 1b and by − 54.7 ± 32.8 points in Experiment 2; 
also as predicted, they overestimated the value of the high-value risky 
door by 86.3 ± 34.6 points in Experiment 1a, by 35.4 ± 18.2 in 
Experiment 1b and by 79.3 ± 31.4 points in Experiment 2. For each 
experiment for the high- and low-value options, we ran a one-sample 
Bayesian t-test comparing participants' estimates of the risky door 
(with respect to the fixed door with the same expected value) to zero (i.e. 
no over/underestimation). There was very strong evidence in favour of 
these differences (Experiment 1a: BFLow= 1.55e+05, [t(89) = − 5.85, p 
< .001, d = 0.62], BFHigh= 3174, [t(79) = 4.90, p < .001, d = 0.55]; 
Experiment 1b: BFLow= 1462, [t(74) = − 4.70, p < .001, d = 0.54], 
BFHigh= 81, [t(70) = 3.83, p < .001, d = 0.45]; Experiment 2: BFLow=
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Fig. 2. Proportion of risky choices for each of the high- and low-value decision trials averaged across the last 3 blocks in Experiment 1a and Experiment 1b. 
Participants were more risk seeking for the high- compared to the low-value trials. Each grey dot represents an individual participant, when more than one 
participant has the same value the dots become darker. 

Fig. 3. The first row shows the correct recalls which is the proportion of outcomes correctly recalled in Experiments 1a, 1b and 2. In all experiments participants had 
very poor recall of the precise outcomes that they had seen. The second row plots the proportion of recalls that were consistent with the possible ranges of outcomes 
for a given door (see Table 1). These are recalled outcomes that are within the correct range for the door shown, but did not have to be the exact numbers that the 
participants saw. For example, for the high-risky door in Experiments 1a and 2, consistent recalls would have been within the ranges of 500–590 and 900–990. Across 
all experiments, participants generated a high proportion of recalls consistent with the cue. 
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15.9, [t(83) = − 3.27, p = .001, d = 0.36], BFHigh= 3861, [t(80) = 4.95, p 
< .001, d = 0.55]). 

3.4. Memory recall and choice 

For Experiments 1a and 1b, we conducted partial correlations1 to 
examine the relationship between memory recall and risky choice. To 
control for variation in the different outcomes individuals experienced, 
we first binned the experienced outcomes according to the range they 
were sampled from (e.g., 100–190) and then calculated the proportion 
of outcomes in this range. For each participant we entered this pro-
portion as a control variable in the partial correlation (see Madan et al. 
(2014)). For the high-value decisions, there was a positive but non- 
significant relationship between risky choice and recall of high-value 
items (Experiment 1a: Rp(74) = 0.16, p = .17; Experiment 1b: Rp(67) 
= 0.16, p = .21). For the low-value decisions in Experiment 1a, there was 
a strong relationship between recall and risky choice: the more low- 
value outcomes people reported in the recall task the less risk seeking 
they were (Rp(82) = − 0.53, p < .001). In Experiment 1b the sample size 
was smaller and there was a non-significant relationship between risky 
choice and recall of the low-value items (Rp(67) = − 0.15, p = .19). 

3.5. Memory recall and estimation 

We conducted an exploratory analysis, using another set of partial 
correlations that controlled for individual experience as above, to 
examine whether there was a relationship between recall and estima-
tion. Only participants who provided both an estimated average for the 
doors and at least one memory recall could be included in this analysis. 
Overall the results from all three experiments provide support in favour 
of the Estimation-Overweighting Hypothesis. For the low-value risky 
doors, the higher the proportion of recalls in the extreme range, the 
lower their estimation of that door. There was a strong, significant 
negative correlation between estimation of the low-value risky door and 
recall of outcomes in the extreme range of the lower value in all ex-
periments (Experiment 1a: Rp(85)= -0.55, p < .001; Experiment 1b: 
Rp(70)= -0.33, p = .006; Experiment 2: Rp(79)= -0.39, p < .001). In 
other words, if people recalled more numbers from the lowest range, 
they were more likely to underestimate the value of the low-value door. 
For the high-value risky doors, there was a positive relationship between 
estimation of the risky-door value and the proportion of recalls in the 
extreme range (Experiment 1a: Rp(74)= 0.29, p = .013; Experiment 1b: 
Rp(67)= 0.24, p = .047; Experiment 2: Rp(73)= 0.52, p < .001). 

3.6. Exploratory modelling 

One possibility for the observed patterns is that people are recalling 
items by randomly sampling from the ranges/categories. Though people 

Fig. 4. The top panel shows the proportion of outcomes recalled for the extreme and the non-extreme ranges for the high and low-value risky doors. For each door, 
the consistent recalls were classified as extreme (EV = 945 and 145 in Exp 1a and 2; EV = 745 and 145 in Exp 1b) or non-extreme (EV = 545 in Exp 1a and 2; EV =
545 and 345 in Exp 1b) and recalled outcomes outside of the door ranges were classified as other. In all experiments, participants generated a greater number of 
outcomes for the extreme ranges compared to the non-extreme range. For each of the risky doors, we examined the first item that each participant recalled. The 
second row plots the proportion of participants who reported an extreme, non-extreme, or other outcome first (e.g. an intrusion from a different door). Participants 
were more likely to report an extreme outcome. 

1 This was pre-registered as a Bayesian partial correlation; however, the 
package we planned on using for this analysis was subsequently removed from 
the online repositories and therefore unavailable. 
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Fig. 5. Distribution of all recalls for each of the risky doors. Participants recalled a greater number of outcomes in the extreme ranges. For example, in Experiment 1a, 
for the low-value risky option, there were more recalls in the 100–190 outcome range, whereas for the high-value risky option, there were more in the 900–990 
range. For both risky doors, the majority of errors were in the ranges of the safe doors (300–390 and 700–790). 

Fig. 6. Participants' mean estimation of the risky doors with reference to the safe door (i.e., after subtracting out participants' mean estimate for the safe door). In all 
experiments participants overestimated the high-value door and underestimated the low-value door. 

A. Mason et al.                                                                                                                                                                                                                                  



Cognition 229 (2022) 105245

9

clearly did not recall the exact items they encountered, another possi-
bility is that they may have had noisy recall of those items. To distin-
guish between these two possibilities we tested a Range-Sampling model 
of recall and a Noisy-Item model of recall. In both cases we modeled the 
consistent recalls. Both models generate a probability of recall of all the 
possible outcomes. Fig. 7 shows an individual participant's probability of 
recalling each number in the outcome range according to both models. 

The Range-Sampling model predicts that, for each option, all 
numbers within the range (e.g., 300–390) have an equal chance (1/91) 
of being recalled. For the risky doors there are twice as many possible 
numbers, and therefore each number has a 1/182 probability of being 
recalled. The Noisy-Item model assumes that when a number is 
encountered in the task the probability of recalling this number and 
nearby numbers increases. 

To calculate the probability of recalling each number in a given 
range (e.g. 100–190), we used a normal distribution around each item 
that was encountered. The normal distribution had a standard deviation 
of 2 so as to reflect noisy recall of specific items. For items encountered 
at the ends of the range (e.g., 102 or 190), we used a truncated normal 
distribution so that all possible recalls were within the range of numbers 
encountered (an assumption of both models). The probability of 
recalling each number can then be determined from the combined 
‘activation’ of each number that was encountered as an outcome in the 
task. Fig. 7 shows this probability distribution for one participant. We 
also report the model fits when wider standard deviations are used (5 
and 10), which reduced the effect of individual items and makes the 
probability of recall more similar to the Range-Sampling model. Table 2 
shows the negative log likelihood for each model summed across 
participants. 

The Range-Sampling Model was the best-fitting model across all 
participants, also when fitted to individual participants, including all 
323 participants in the three experiments. Thus, a simple memory-plus- 
noise model does not suffice to capture the pattern of recall beyond 
random sampling from the range. As the standard deviation of the Noisy- 
Item model increases, the model becomes more similar to the Range- 
Sampling model and the fit improves. 

4. Discussion 

Together these experiments establish that reported memories for 
experienced outcomes may be confabulated and can drive a strong de-
cision bias. People primarily recalled outcomes that fit the experienced 
distributions, but those outcomes were ones that they had not actually 
experienced. In addition, across all three Experiments we found evi-
dence to support the Memory-Overweighting, Estimation-Overweighting 
and Overweighting-in-Choice hypotheses. Memory, estimation and choice 
(Experiments 1a and 1b) exhibited an overweighting of extreme out-
comes, even when those outcomes were drawn from a continuous dis-
tribution. We did not find support for the Preferential-Overweighting 
hypothesis. Instead, Experiment 2 highlights how this memory bias 
emerges even in the absence of preferential choice, suggesting that the 
choice biases are driven by these memory biases and are not the cause of 
the memory biases (see also Vanunu et al. (2020) and Olschewski, 
Newell, Oberholzer, and Scheibehenne (2021)). We did not make spe-
cific predictions regarding the correlations between memory and choice 
or memory and estimation. This is because a much larger sample size 
would be required to make firm conclusions on the basis of these cor-
relations. Nonetheless, in the preferential tasks, we observed a consis-
tent relationship between under/over estimation and risky choice. In 
Experiment 1a for low-value items there was also a positive relationship 
between recall of low value items and risky choice. Notably, the memory 
recalls were not veridical, nor evenly distributed. Instead, people 

Fig. 7. The two plots show the probability of recall of all possible items according to the Noisy-Item and the Range-Sampling models for a single participant (plot 
based on Experiment 1a - Participant 11). 

Table 2 
Negative log likelihood of each model (summed across participants) for the three 
experiments. The lower the value the better the fit of the model. The best-fitting 
model is in bold.  

Experiment Noisy-item model Range-sampling model 

SD = 2 SD = 5 SD = 10 

1a 321,424 286,473 282,067 279,973 
1b 327,583 292,895 288,595 286,642 
2 332,770 322,292 320,474 319,292  
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generated recalls according to an overweighting of the extreme ranges. 
Across all experiments, people were more likely to recall extreme 

outcomes first, extending earlier work with binary gambles (Ludvig 
et al., 2018; Madan et al., 2014). In addition, people overweighted the 
extremes when estimating the mean of the presented options, over-
estimating high-value risky options and underestimating low-value risky 
options. Across experiments, people had very low proportions correct 
for memory recalls (see Fig. 3). Participants, however, effectively 
encountered a very long list of items (240 total outcomes across all 
doors), so we would expect low accuracy in a free-recall task, given that 
accuracy decreases with list length (Ward & Tan, 2004). We therefore 
examined the errors or intrusions that people made. There is a large 
literature examining memory for numbers including number represen-
tation (Thevenot & Barrouillet, 2006), recognition memory for decision 
outcomes (Sobkow, Olszewska, & Traczyk, 2020), and memory for 
probability distributions (Goldstein & Rothschild, 2014). There is, 
however, scant evidence on free recall of numeric stimuli (but see Dale 
and Baddeley (1966) and Mason, Brown, Ward, and Farrell (2019)). In 
similar word-learning tasks, people are more likely to recall semanti-
cally related items from lists other than the target list (Miller, Weide-
mann, & Kahana, 2012). Our results show a surprising pattern of 
memory intrusions, as we see increased recall of plausible but confab-
ulated outcomes from the same source or “list”. 

One interesting possibility is that people are engaging in a form of 
generalization as seen in category and function learning (DeLosh et al., 
1997) or gist abstraction (Feld & Born, 2017). This generalization en-
ables them to confabulate recalls for each of the cues in line with the 
features of the category (e.g., a number between 100 and 190). This 
possibility poses the interesting question of how people learn these 
categories and whether they focus on the edges or boundary conditions. 
Gist abstraction refers to the process by which people learn a rule or 
category and generate new samples accordingly and is typically studied 
in relation to sleep and memory consolidation. Following periods of 
sleep, compared to wakefulness, people sometimes show better memory 
for related items than the studied items themselves (Stickgold & Walker, 
2013). For example, if a list of words included “snow” and “frost”, 
people would show increased memory for “cold” (although see Pardilla- 
Delgado and Payne (2017)). This tendency is similar to the distorted 
recalls for semantically-related word lists found in the false-memory 
literature (Reyna, Corbin, Weldon, & Brainerd, 2016). In the false- 
memory literature, confabulations are false statements, made without 
the intention to deceive, which can have similar qualities to real mem-
ories (Johnson & Raye, 1998). Similarly, the word confabulation has 
been used to describe ad-hoc generated explanations of one's own 
behaviour (Bergamaschi Ganapini, 2020; Coltheart, 2017). This view is 
in line with our use of the term, specifically when participants report 
outcomes they did not experience but that align with their general 
experiences. 

The present results provide evidence that people are using a higher- 
level, abstract representation to support decision-making. Such a gist- 
like trace features prominently in Fuzzy Trace Theory (Brainerd et al., 
1999); according to Fuzzy Trace Theory, the verbatim, or item-specific, 
trace fades faster than the gist trace. Presumably if the experiment were 
repeated with a shorter delay between items and test, we would observe 
better recall for specific instances. Based on previous work, reliance on a 
different type of memory representation could shift risk preference. St- 
Amand, Sheldon, and Otto (2018) directly examined how gist-based or 
episodic-memory strategies influence risk-seeking behaviour, using a 
variation of the current task. Participants were trained to either use 
episodic-memory recollection or general impression formation before 
completing a risky-choice task. They found that participants trained to 
use episodic memory strategies were more risk seeking. Their decision- 
making task had a limited set of decision outcomes and did not directly 
test memory accuracy, making it more difficult to determine the extent 
to which participants were relying on recall of specific instances. 
Interestingly, the risk preferences (and memory recall patterns) in the 

current study are consistent with prior findings that use a smaller set of 
outcomes (Konstantinidis, Taylor, & Newell, 2018; Madan et al., 2021). 
Based on our results and previous findings, we would predict that when 
choice involves repeated exposure to similar outcomes people rely on 
gist-based memory strategies but that when particular outcomes are 
made salient it is possible to shift risk preferences (Bornstein et al., 2017; 
Cherkasova et al., 2018; Ludvig et al., 2015; Spetch, Madan, Liu, & 
Ludvig, 2020). 

The precision or coarseness with which outcomes are encoded, rep-
resented or retrieved (and reconstructed) provide the raw materials for 
recall responses (Goldsmith, Koriat, & Weinberg-Eliezer, 2002). In a 
recent study examining how encoding and retrieval affect risky choices, 
we found that the encoding context determines how items are used in 
the decision-making process (Madan et al., 2021). Therefore, one pos-
sibility is that the encoding and subsequent representation of the out-
comes themselves is noisy or fuzzy (Reyna, 2012). This suggestion is 
related to the idea that recalling outcomes from memory when making 
decisions involves reconstructing the original as opposed to making a 
carbon copy of them (Weber & Johnson, 2006). In Bayesian approaches 
to reconstructive memory, model noise is introduced as a weighted 
function of the memory itself and the assumed prior distribution of 
similar objects or categories in memory (Hemmer & Steyvers, 2009). 
The prior information is one way that errors in reconstruction can occur, 
but additionally, samples are drawn from memory with a Gaussian noise 
distribution centered on the original value of the studied item, similar to 
the Noisy-Item model of recall we tested. This noisy sampling is akin to 
decay or interference in other memory-based models (Lehman & 
Malmberg, 2009; Stewart et al., 2006). In situations where memories are 
noisy, the prior is weighted more heavily. In our experiments, the 
repeated exposure to relatively indiscriminate individual events may 
lead people to rely more heavily on their prior beliefs that extreme 
outcomes are more informative. 

An interesting issue is how well existing models of memory and 
decision-making would handle the current data. The first issue, which is 
not new, is how they can account for extreme overweighting, for 
example by including a sampling bias so that extreme events are 
sampled more often from memory (Lieder et al., 2018; Vanunu et al., 
2020; Vanunu, Hotaling, Le Pelley, & Newell, 2021). A similar bias to-
wards items at the extremes is found in models of estimation (Tsetsos 
et al., 2012). The current data, however, allows us to further probe what 
information or representation is being sampled from memory. Here, 
people confabulated outcomes that came from the correct ranges, but 
were not the exact outcomes they had experienced. This pattern of 
sampling from memory is reflected in the Range-Sampling model, which 
outperformed a Noisy-Item model and assumes that people have learnt 
the ends of the range. Decision-by-sampling similarly assumes that 
people have knowledge of the underlying distributions of outcomes and 
draw a small sample of these from memory to make choices (Stewart, 
2009). Our results provide support that people are indeed using 
knowledge about the range of possible outcomes to support decision- 
making. 

In the absolute identification and production literature, more 
extreme stimuli are responded to more accurately and faster than central 
stimuli (Marley & Cook, 1984; Stewart, Brown, & Chater, 2005; Zotov, 
Shaki, & Marley, 2010). In models of these tasks, the general context of a 
stimulus set is set by anchors at either end of the range (Braida et al., 
1984). The stimuli become more discriminable at the ends of the range, 
and this effect increases with set size (Lacouture & Marley, 1995). Such a 
model would provide a good account of the gradual edge effects 
observed in recalls and the idea that items are generated from within a 
known experimental range. This approach contrasts to exemplar models 
that also account for edge effects by assuming that items at the end of the 
range have fewer neighbors with which to be confused (Brown, Neath, & 
Chater, 2002; Nosofsky, 1986). 

The recall of new or confabulated values is problematic for exemplar 
representation models (Hotaling, Donkin, Jarvstad, & Newell, 2022) 
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and episodic reinforcement learning models (Bornstein et al., 2017), and 
the results suggest participants have knowledge instead of the range of 
outcomes. One possible caveat here is that our task design used out-
comes drawn from a set of well-defined ranges. Past memory research, 
however, indicates that the edges are overweighted even with more 
continuous outcomes (Madan & Spetch, 2012). Similarly, although not 
continuous, the ranges used in Experiment 1b are closer than those used 
in Experiments 1a and 2. On this basis we would predict the same 
memory and decision biases would be seen if all outcomes occurred over 
a truly continuous set of outcomes, with no clearly defined ranges. The 
biases may not be as strong, given that in Experiment 1b, where the 
ranges are closer together, there were more recalls outside of the pre-
scribed ranges and more confusions between nearby ranges. More 
generally, the relationship between the operant-like learning involved in 
decisions-from-experience tasks and the role of episodic memory is not 
yet well understood (Madan, 2020; Mason, Ludvig, & Madan, 2021). 
Both our behavioural and modelling results shed light on this relation-
ship and provide evidence against direct episodic recalls of events and 
casts doubt on models that exclusively rely on individual samples of 
items from memory (Bornstein et al., 2017; Gonzalez et al., 2003; 
Hotaling, Donkin, Jarvstad, & Newell, 2022). 

An open question is then, under what conditions items are veridically 
sampled from memory or generated according to a rule when making 
decisions-from-experience. The design of previous experiments has not 
allowed for the two approaches to be compared. In other cognitive do-
mains, such as vision, language and reasoning, Bayesian models have 
been developed where some items are sampled directly from memory or 
perceptual content and others are simulated/generated (Zhu, Sanborn, 
& Chater, 2020). This two-pronged approach provides knowledge of the 
posterior distribution without requiring the distribution to be explicitly 
calculated. Critically, in complex situations, this approach does not 
require knowledge of an entire distribution to make effective inferences 
(Sanborn & Beierholm, 2016). These considerations suggest that both 
approaches to sampling outcomes (from memory and through a gener-
ative process) may be important in decisions-from-experience as well. 

A recent study compared how extreme values are used in preferential 
(averaging tasks) and perceptual (risky choice) judgments (Vanunu 
et al., 2020). In both tasks, outcomes were displayed simultaneously on 
screen as an array of numbers. The authors found a bias towards sam-
pling of high extreme numbers regardless of task. In our experiments, we 
included a perceptual (averaging) task in all experiments, but Experi-
ments 1a and 1b involved choice, whereas Experiment 2 did not. These 
results support the notion that there are some bottom-up features that 
determine the weighting of stimuli (Kunar et al., 2017). Interestingly in 
our experiments the relationship between memory and estimation was 
stronger in the non-preferential compared to the preferential task, 
although this may be due to the simplified nature of the non-preferential 
task and consequent better memory recall overall. Olschewski et al. 
(2021) found that people consistently under-weighted the average of 
continuous outcomes in an estimation task. In our task, we demonstrate 
that people show under- or over-weighting depending on whether a 
risky option contains the high- or low-value extremes and that the effects 
of under-weighting are stronger than over-weighting. In both our tasks 
participants completed the recall task prior to the estimation task, and 
we therefore cannot exclude the possibility that the order of the tasks 
influenced the level of over/under estimation as they were more likely to 
recall extreme values. For the current experiments the recall analysis 
was central to our research question but future experiments could 
examine whether task-order effects influence the degree to which par-
ticipants engage in memory-based strategies during evaluations (Hastie 
& Park, 1986). 

Overall, we have shown that in both preferential and non- 
preferential experience-based tasks, people did not exhibit veridical 
recall, but rather confabulated outcomes. These confabulated outcomes 
were not random, however, and were clearly biased towards being 
correctly drawn from the more extreme ranges of experienced outcomes. 

These results suggest that the observed memory biases towards extremes 
are responsible for the concomitant decision biases and, more generally, 
provide evidence against decision-making models that rely solely on 
episodic retrieval of individual instances of past outcomes. 
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