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Nonhuman primate neuroimaging is on the cusp of a transformation, much in the same way its human coun-
terpart was in 2010, when the Human Connectome Project was launched to accelerate progress. Inspired by
an open data-sharing initiative, the global community recently met and, in this article, breaks through
obstacles to define its ambitions.
Nonhuman primate (NHP) neuroimaging

carries tremendous translational promise

for biomedicine (Phillips et al., 2014;

Roelfsema and Treue, 2014). However,

progress has been slow, as researchers

face not only the many challenges that

human neuroimaging has overcome but

also unique obstacles that require

consensus solutions. To date, the

approach has remained largely piecemeal

and single-lab driven, causing most

NHP researchers to struggle to amass

datasets consisting of even 10 to 20 sub-

jects, whereas their human-imaging

counterparts now aim for thousands.

The PRIMatE Data Exchange (PRIME-

DE) was recently established to accel-

erate the pace of advancement (Milham

et al., 2018) by promoting a culture of

collaboration and open science in the

NHP neuroimaging community. PRIME-

DE established a repository of openly

shared data in 2018, followed by a Global

Collaboration Workshop (GCW) on

September 5–6, 2019 at the Wellcome

Trust in London. Through these efforts,

the community has made substantial

progress toward a global vision and here

outlines its ambitious albeit eminently

achievable goals. Four key domains of

activity in NHP neuroimaging are consid-

ered that can dramatically accelerate

progress.

Standardizing Data Collection
Harmonizing Data Collection Is Key

for Reproducibility and Shared

Data Value

Minimal Data Acquisition Specifications.

There was agreement that a universal

data acquisition protocol is not yet prac-

tical, but minimal specifications can be

defined toward standardization. A shared
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lesson from the Human Connectome

Project (Van Essen et al., 2013) is that

the cortical sheet should be resolvable

with isotropic voxels no larger than half

the minimum cortical thickness (e.g.,

0.5–0.6 mm voxels for macaque cortex

and 0.4 mm for marmosets). Acquiring

3D T1- and T2-weighted scans is impor-

tant for brain segmentation, and T1/T2

ratios can generate ‘‘myelin maps’’ to

assist surface mapping and rapid quality

checking.

For functional MRI, attainable target

spatial resolutions are 1.0-mm isotropic

voxels for large NHPs and 0.5 mm for

smaller ones. However, these are beyond

the 1.2–1.5 mm range currently employed

on common 3 Tesla scanners, and

manufacturers are phasing out gradient

inserts previously used to boost signal-

to-noise. A way forward is the adoption

of more sophisticated coil systems with

higher signal to noise (SNR), enhanced

with acceleration methods (multiband im-

aging) for higher functional and temporal

resolution with less acquisition time.

These coils are commercially available

(24-channel macaque, 16-channel

marmoset) though still require customiza-

tion to accommodate head posts and/or

chambers.

Anesthetized Imaging. Although

awake imaging is clearly the long-term

aspiration for NHP imaging, it is techni-

cally challenging and requires training

the subject. Thus, anesthetized imaging

remains important for resting-state,

diffusion, and structural imaging and

benefits from minimal head motion. A

key factor for establishing common

practice is standardizing the anesthetic

agents. Many GCW laboratories

already use highly similar protocols,
lsevier Inc.
entailing isoflurane anesthesia for

structural imaging and IV administration

of dexmedetomidine (0.015–0.02mg per

kg bolus or 4.5–5.0ug per kg per h infu-

sion) to allow reduction of isoflurane

concentrations to between 0.6%–1.0%

to improve the functional MRI signal.

Other agents are being successfully

employed and might be required by

researchers for scientific reasons (Fleck-

nell, 2015). Beyond the specific agents

employed, opportunities exist to

advance the monitoring and control of

anesthesia depth throughout scanning

by logging temperature, end tidal CO2,

O2 saturation, respiration rate, heart

rate, and blood pressure synchronized

to data acquisition.

Awake Imaging. Four identifiable chal-

lenges confront awake NHP imaging.

First is the challenge of behavioral

training for the scanner environment.

Second, the placement of head immobi-

lization hardware determines which

brain areas are accessible with head

coils. This precludes universal accep-

tance of a single head coil and necessi-

tates customization or generating a

range of standardized options. Third,

noninvasive eye tracking provides a

key control measure in awake NHPs.

Finally, head and jaw movements, as

well as the apparent head movement

and brain distortions produced by

changes in susceptibility from body

and limb motion, remain a problem for

awake imaging, particularly at high

magnetic fields. Behavioral training and

external monitoring methods, such as

magnetic resonance (MR)-compatible

video tracking and jaw and/or body

motion sensors, can be invaluable

for correcting motion. Post-acquisition
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methods (e.g., ICA-AROMA, ICA-FIX)

will help; and film viewing, when appro-

priate, can decrease head motion (as re-

ported in human neuroimaging).

Opportunities for Improving Data

Quality. Although using higher field

scanners is an obvious way to improve

data quality, current costs (�1 million

USD per Tesla) and operational nuances

make them relatively inaccessible to

most groups. Recent findings suggest

that iron-based contrast agents such

as monocrystalline iron oxide nanopar-

ticle (MION) can increase contrast-to-

noise ratio (CNR) and spatial specificity

at 3 T. However, this has limitations, as

the agents tend to be costly, and

frequent usage necessitates the intro-

duction of chelating agents to minimize

impact on animal welfare by long-term

accumulation of iron. Additionally,

contrast agents measure cerebral blood

volume (CBV) rather than the blood-

oxygenation-level-dependent (BOLD)

response, complicating comparison to

human BOLD fMRI. Unlike human MRI,

NHP MRI suffers from dramatic signal

variations from coils or other sources.

Thus, appropriate quality control strate-

gies should be implemented both for

custom and standard coils. An approach

to improve fMRI data quality is to in-

crease the number and duration of

acquisition sessions (Xu et al., 2018).

Prospective motion correction ap-

proaches deployed in human research

(Maclaren et al., 2013) may also improve

structural imaging. Currently, the main

way to avoid motion artifacts in awake

imaging is to limit head movements

(e.g., training or head immobilizing).

Finally, investigators identified the

need for creating and sharing NHP

‘‘phantoms,’’ which would allow data-

collection sites to check and benchmark

their data-collection protocols using

a common reference as is done in hu-

man imaging. Such phantoms would

be created and made freely available

as a 3D-printed model of a given spe-

cies’ brain filled with a contrast agent

with known relaxation times to stan-

dardize signal-to-noise assessment

across sites. Phantoms could be

created for any of the primate species

(apes, marmosets, baboons, ma-

caques). Importantly, working on good

quality data acquisition beats any
post-acquisition cleaning algorithm

available and is crucial if we are to

create standard pipelines for NHP MRI

data analysis.

Animal Welfare, Regulations, and
Intellectual Property
NHP Imaging Stakeholders Are

Seeking Policy-Making Guidance

from and Working with Funding

Agencies, Professional Societies,

and the Larger Community to

Ensure Maximum Benefit and

Transparency

Animal Welfare and Regulations. NHP

neuroscience is a heavily scrutinized and

extremely sensitive area of research with

extensive ethical approval processes

and oversight. However, NHP research

is not governed by a common set of inter-

national regulations or ethical statements

(e.g., Declaration of Helsinki for human

research). National differences in NHP

research and NHP welfare regulations

are particularly problematic for efforts to

collaborate internationally. The commu-

nity agreed that addressing this challenge

going forward will benefit from additional

transparency when sharing their datasets,

including identification of the relevant

regulatory body and reference to their

published standards. Additionally, it will

be important to increase the collection

and sharing alongside MRI data of objec-

tive and evidence-based measures of an-

imal health status as metadata, which can

also provide scientific insights (e.g.,

home-cage behavioral data, eye-tracking

data, genomic information, rearing and

maintenance information, sourcing of

animals, anesthesia maintenance values,

as relevant). National primate centers

and breeding sites can help with collec-

tion of this metadata.

Engaging the Public. Candid and trans-

parent communication with the public on

the importance of nonhuman animal

research is vital for maintaining and

increasing governmental and public sup-

port. It is not uncommon for institutions

and scientists to find themselves in a

reactive rather than proactive position,

focusing solely on the defense of their

work. Recent experience is showing that

a proactive stance raises public aware-

ness and support for animal research as

a key element of modern science and

medicine, balancing the discussion of
concerns raised by activist groups. Politi-

cians are often unaware of the impact of

the animal research occurring in their

own constituencies, which can lead to

legislation being put forward that fails to

capture the importance of scientific ad-

vances. Institutional and funding-body

press offices could better link transla-

tional developments directly to the foun-

dational research performed on labora-

tory animals because the reporting of the

fundamental animal research bases is

often unmentioned. Researchers and

their institutions can find support and

public-engagement training from groups

such as Speaking of Research (US),

Basel Declaration on Animal Research

(EU), Pro-Test Deutschland (GER), Pro-

Test Italia (ITL), Understanding Animal

Research (UK), and Gircor (FRA).

Alongside the importance of the work,

the public can learn about the balance

between benefits and harms, including

evidence-based safeguards for animal

welfare. Several institutions have

now signed the UK Concordat on

Openness in Animal Research (http://

concordatopenness.org.uk). This now

five-year-old agreement, currently signed

by 122 institutions, encourages openness

and better information sharing about

animal research. Rather than being a

generic statement on openness that will

find nominal support by most institutions,

the Concordat annually assesses, sup-

ports, and rewards institutional public

engagement efforts. Communication ef-

forts emerging from signatories of this

agreement have been impressive (more

useful information on institutional web-

sites, patient-led activities, virtual tours

of animal facilities, and better-balanced

social media discussions). Lastly, the

community noted the need for increased

leadership from the national and interna-

tional research organizations in efforts to

explain the continued importance of

NHP research, supporting researchers

and engaging the public.

Crediting and Intellectual Property. In

NHP research, where substantial costs

and efforts are required for training or

maintenance of a single individual, investi-

gators hold real concerns about not being

appropriately credited or being ‘‘scooped’’

analytically with one’s own data. Recent

years have witnessed an increasing

acceptance of ‘‘data descriptors’’ or
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‘‘data papers’’ on resource-sharing infra-

structures (Neuroimaging Informatics

Tools and Resources Clearinghouse

[NITRC], Zenodo) as a publication-based

means of crediting data generators and

encouraging sharing. Digital object identi-

fiers (DOI) assigned to datasets can further

assure the rapid identification, crediting,

and tracking of datasets. However, such

efforts need to be recognized by the insti-

tutions and used in promotion reviews

(e.g., Declaration on Research Assess-

ment, https://sfdora.org). This situation is

problematic for the advancement of open

science andmust be addressed by a coor-

dinated effort involving both institutions

and funders recognizing the importance

of data generation and sharing. These real-

ities often drive investigators to hold back

their newest data from sharing initiatives,

instead sharing only those datasets that

have already yielded publications.

GCWparticipants converged on a solu-

tion that moving forward, in addition to

fully open sharing options, a ‘‘collabora-

tion seeking’’ sharing option will be added

with the following terms: (1) early sharing

encouraged, but an investigator can

accept or reject access requests to

these data; (2) the investigative team

may receive co-authorship credit on the

publication (to be negotiated by the

dataset holders and proposed collabo-

rator); and (3) upon publication of the

first manuscript, the data status will

switch to open sharing. Additionally,

GCW participants felt that the generation

of a registry of ongoing studies would

be immensely important for the NHP

research community to avoid duplicating

efforts and to foster collaboration.

Finally, the issue of using shared data for

commercial purposes remains unre-

solved. In human studies, the data gener-

ators can consent to commercial use or

not, but for the NHP community, it is

less clear if ownership lies with the data

generator, institution, or funder.

Data Standards, Quality
Assessment, and Analytic
Softwares
The Adoption of Data Standards and

Open Analytic Solutions Are Readily

Attainable

Data Standards. There is a clear need

for metadata standards in NHP data

acquisition. The Brain Imaging Data
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Structure (BIDS) framework (Gorgolewski

et al., 2016), used in the initial PRIME-

DE data release, is recommended given

its rapid maturation and widespread

adoption in human neuroimaging,

including EEG and MEG. However, the

BIDS format will require revision to cap-

ture the range of metadata unique to

NHPs. Minimally, species and scanning

position (upright, sphinx) require specifi-

cation. Metadata could also include de-

tails regarding anesthesia protocol,

contrast agents, coil type (surface versus

volume), head-fixation information, sub-

species, age, sex, universal specimen

identifiers, body weight, available

genomic information, and animal origin.

The NIfTI (Neuroimaging Informatics

Technology Initiative) and GIfTI (geometry

format under NIfTI) formats, for volumetric

and surface datasets respectively, pro-

vide a standard for porting data between

software packages. The CIFTI (Connec-

tivity Informatics Technology Initiative)

format appears to be well positioned as

a framework for connectivity analyses

that span surface-based representations

and subcortical regions.

Quality Assessment.NHP imagers have

yet to reach a consensus on quality

assessment or assurance. Some datasets

might be of higher quality, even if these

are from fewer animals. There are also

concerns that implementing high QC

standards at this initial stage will stall

data sharing, and analytic methods

may be developed to rescue lower

quality data. In the human literature,

steps toward universal approaches to

quantify data quality are being made

(e.g., MRIQC) and could be adapted for

NHP imaging. However, most existing

tools are optimized for human heads,

which have very different tissue profiles

and are imaged at lower resolution. Inves-

tigators are leveraging technical ad-

vances (e.g., multichannel segmentation,

deep learning, improved templates) to

break through this barrier and avoid

manual correction. However, at present,

visual inspection and ratings remain key

steps for quality assessment and analyt-

ical validation. Given these realities, the

PRIME-DE consortium has recommen-

ded sharing all data regardless of data

quality and to share QC ratings for the

datasets. Finally, real-time quality assess-

ments have been recently automated in
the human literature (e.g., the Framewise

Integrated Real-time MRI Monitoring

[FIRMM]) and could be adapted for NHP

imaging for motion monitoring, feedback,

and to assess when sufficient data have

been collected.

Pipelines. There is a scarcity of end-to-

end NHP image preprocessing pipeline

solutions, including surface-based ana-

lyses. Investigators identified a range of

open-source tools and pipelines that are

available or progressing in their develop-

ment, making it just a matter of time

until the reliance on in-house code de-

creases. This process can be accelerated

through establishing mechanisms for

rapid communication of developments

via wikis, mailing lists, technical notes,

code repositories, notebooking sites,

and Brainhack events. Such communica-

tion is especially important in assisting

investigators from outside of NHP imag-

ing to engage with this community’s

data. Publication of methods papers is

encouraged and their value should be

considered in assessing a researcher’s

productivity. Lastly, it is worth noting

that scientists are making progress in

tackling the challenges of within and

interspecies alignment. These efforts

are crucial not only in advancing our

understanding of the NHP brain but also

in creating a common terminology be-

tween researchers from human imaging

and the NHP community who quite

often still use different vocabularies. A

critical ongoing effort by some groups

attending the GCW is the alignment of

imaging and digitization of the wealth of

histological and tract-tracing data in

NHPs. With sufficient investment, such

important data could be curated, helping

to bridge analytical scales.

Coordinated Paradigm Design
Common Ground in Functional

Imaging Creates Opportunities for

Globally Coordinated Activity

Functional localizers are commonly used

in human and NHP imaging, spanning

retinotopy, tonotopy, object perception,

somatotopy, eye movements, social

cognition, and more. To date, labs have

tended to use customized approaches

by creating and using their own localizer

stimuli, typically in a relatively limited

number of subjects. Commonalities in

focus areas across laboratories create

https://sfdora.org
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opportunities for coordinated paradigm

design and data sharing. First, the simple

sharing of final statistical maps (e.g., via

NeuroVault, Open Science Framework,

or the Brain Analysis Library of Spatial

Maps and Atlases [BALSA]) would gener-

ously allow applying meta-analytic tech-

niques and aggregating across site infor-

mation. Equally important, the sharing of

functional localizer stimuli would allow

harmonizing efforts and, as a result,

improve the likelihood of reproducible

findings, dramatically enhancing the value

of shared datasets. Complementing

lower-level functional localizers are natu-

ralistic stimuli (e.g., films), which can be

used to probe a range of systems,

including higher-order association areas.

Unfortunately, there is great variation in

naturalistic stimuli across laboratories

and in custom analyses that are needed

to extract meaningful information from

these localizers. As a first step, the com-

munity agreed that small groups will

work together on obtaining coordinated

localizer data for different modalities in

30 individuals as a basis for creating tem-

plate-based probabilistic maps. These

data will be invaluable to the broader

community that often requires information

on where functional fiducials reside in

specific individuals. Long term, the com-

munity wants to work toward generating

a collection of natural films and analytical

approaches for a rapid (10–15 min) multi-

faceted ‘‘primate global localizer’’ that

could be used by many laboratories. Its

usefulness will need to be validated and

established alongside information from

accepted localizers.

Ambitions for the Next Five Years
Over the course of the next five to ten

years, the PRIME-DE GCW attendees

agreed that it will be possible to collect

and share structural scans from 1,000

NHPs in various species with further

grassroots sharing efforts of higher quality

and more extensive datasets in 200 ani-

mals. With financial support, the coordi-
nation of activities centered around local-

izers could yield data from 30 animals

for a given localizer, as the community

works toward a multi-faceted primate

functional localizer. More substantial in-

vestment would allow the generation of

a large-scale, multimodal resource for

NHPs similar to the Human Connectome

Project, possibly including developmental

samples (pediatric, fetal) and metadata

(genotyping and phenotyping information,

etc.). The integration of digitized neuronal

tract tracing data, neurophysiology (high

density recordings, laminar, etc.), histol-

ogy, and neuromodulation approaches

(optogenetics, electrical microstimula-

tion, pharmacological inactivation, ultra-

sound, etc.) would bring unprecedented

value to the resource.
Conclusion
We have synthesized a perspective put

forward by the GCWmeeting on the chal-

lenges and opportunities for NHP imaging

and the ambitions of the community.

Given the grassroots nature of the effort,

the community recognized the need to

meet regularly to strengthen communica-

tion and facilitate progress. Following the

lead of its human counterpart, NHP imag-

ing is unquestionably evolving toward

reproducible and scalable science. To

accelerate the pace of its evolution

through increased collaboration, sharing,

and investment, large-scale global neuro-

science ventures (e.g., the BRAIN Initia-

tive, Human Brain Project) and other fund-

ing schemes will need to support the

community objectives for the next five to

ten years of data generation and sharing.

If the PRIME-DE GCW serves as a litmus

test, exciting advances, and discoveries

will become evident by global collabora-

tion and support.
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